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Artificial General Intelligence (AGI)

~ Artificial General Intelligence (AGI) has achieved huge
success in NLP and CV areas.

0 e.g. Copilot, ChatGPT, Midjourney, etc

ChatSonic

o
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Personality: General Alv
Compare iPhone 14 with iPhone 13 Pro

The iPhone 14 and iPhone 13 Pro are similar in size and design, with
the 13 Pro featuring a mare premium and durable stainless steel rim.
The 14 adds a new purple color opticn and a wider 1/1.9 aperture front
camera. but has a dual-camera system compared to the 13 Pro's triple
12-megapixel lens. Both phones run on the same A15 Bionic chip, but
the 13 Pro has a 5-core GPU while the 14 has a 4-core GPU. The 13
Pro has a superior display with a 120Hz refresh rafe. and a dedicated
3x telephoto camera for more detailed zoomed shots. The 14 has &
larger battery and benefits from the Photonic Engine te boost
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\ A Basic Workflow of AGI

~ Step 1: Pre—train a very large language model (LLM)
via specific strategies.

o e.g. masked word prediction

KDD24 will withess many high-quality outcomes.

iy t
|
Pre-training Large Language ' Calculating
& @ Model via Masked Word l loss for
Prediction Task : updating
|
arameters
> LoP

KDD24 will <Mask> many high-quality <Mask>.



'A Basic Workflow of AGI
> Step 2: Prompting a pre-trained LLM

Help me answer a multiple choice o I i

Question: Greenhouses are great for plants like A Ianguage prompt IS a _ple_Ce

A.Pizza B. Lollipops C. French beans of text added to the beglnnlng
! of an input text.

* The large language model can
é * Language Model be pre-trained via next word

prediction

\ 4

AnS/l/eI' The correct answer 1s C. French beans.

Question-answer task is reformulated to word prediction task, which is
consistent with the pre-training strategy, thus we do not need to tune LLM.



\ Graph AGI: All In One and One For All

nput — All In One One For AII
‘r
Text é N / Question Answering ‘ ¢
/ __ X - ‘
N
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'Three Foundation Problems on Graph AGI

> Do we have any graph foundation model?
> How to preserve graph knowledge?
~ How to use the knowledge for general tasks (or even domains)?
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'Basic Tasks in Graph

RN

(a) Node Classification b) Link Prediction (c) Graph Classification




‘Current Graph Neural Networks

» Message—passing: GCN, GAT, etc.
> Transformer: Graph Transformer.
» From pair—-wise to more general relations

We are still exploring more general graph model
design

10



'Most Popular Methods to Process Graph

~ Graph Neural Networks (GNNs) @
e <* i
A
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/ \ A — A
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\ Graph

> How can graph learning benefit from A/f In One and One For All

paradigm?
/ Trij Classification
Molecule
Property
Prediction
[sue) 5
—) Fraud Detection

Al

Recommendation

12



Graph

How can graph learning benefit from pretrain-prompt/finetune

iam?
paradigm? Prompting/Finetune

Multi-domain Downstream Tasks
_Graph Datasets 1
| )

r@ ) 22 Link
itation Networ Graph Neural P Prediction
Network
ocial Network %l — Trrzzlassuflca’rmj
: —- ? _
OO -: ? :- R
%olecular Graph = — LQ easoning )
. L L N )
Web Llnk ar‘geMoadrégluagd @ Recommenda‘rio
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'Road Map

> How to preserve graph knowledge?

o Uni-modal Pretraining
o Multi-modal Pretraining

- How to use the knowledge for general tasks (or
even domains)?
o Pretraining with Prompting

14
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Outline

> Motivation

» Categorization of graph pre-training methods
0 Supervised graph pre-training
o Unsupervised graph pre-training
= Predictive-based

= Contrastive-based
= Generative-based

> Limitations
o Advanced graph pre-training

16



Motivation

Scarce Labeled Data.

o Many applications of machine learning require a model to make
accurate predictions on test examples that are distributionally
different from training ones, while task-specific labels are scarce
during training.

Out-of-distribution Generalization.

o Existing GNNSs lack out-of-distribution generalization abilities so that
their performance substantially degrades when there exist distribution
shifts between training and testing graph data.

17



Categorization

First Generation: Pre—trained Graph Embeddings.

o Inspired by Skip-gram, the first generation pre-trained graph embedding
methods aim to learn good graph embeddings for node clustering, link
prediction and visualization.

Second Generation: Pre—trained Graph Encoders.

o With the emergence of expressive GNNs and Transformer, recent
graph pre-training methods have embraced a transfer learning setting
where the goal is to pre-train a generic encoder that can deal with
different tasks.

Xia, Jun, et al. "A survey of pretraining on graphs: Taxonomy, methods, and applications." arXiv preprint arXiv:2202.07893 (2022).



Categorization

AUG-MAE ~
GraphMAE2 (AAAI 24)
(SIGKDD 23)
VGAE
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(arXiv 20) Generative-
. DGI based
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(NeurIPS 20) CAGNN -
. nsupervise M3C (arXiv 20)
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Encoders (IGKDD 29
DeepWalk
(SIGKDD 14) Metapath2vec
. (SIGKDD 17)
Pretrained Graph LINE
(WWW 16)

Embeddings



Pre—trained Graph Embeddings

DeepWalk considers the node paths traversed by random walks
over graphs as the sentences and leveraging Skip—Gram for
learning latent node representations.

W, = 4
o9 3
d
Upe 1]?%;—)- ]
5 HH
1 o !
: & (v, ) EEEEER
(a) Random walk generation. (b) Representation mapping. (c) Hierarchical Softmax.

20
Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. SIGKDD 2014.



Pre—trained Graph Embeddings

Node2vec learns a mapping of nodes to a low-dimensional
space of features that maximizes the likelihood of preserving
network neighborhoods of nodes.

Grover, Aditya, and Jure Leskovec. node2vec: Scalable feature learning for networks. SIGKDD 2016.

21



Supervised Graph Pre-training

Hu et al. pretrain GNNs by graph-level multi-task
supervised pre-training to jointly predict a diverse set of
supervised labels of individual graphs.

(a.i)  Node-level (a.ii) Graph-level (a.ii) Node-level + (b) Categorization of our pre-training methods
pre-training only pre-training only Graph-level pre-training
@
3 ¢ < o Node-level | Graph-level
Q ode-leve raph-leve
> @@ g @ <>. .: ¢ R
g - 4 B e A _
A INVA . _ Supervised
Pooling——— Pooling——— [Pooling—- Att"_bu_te Attrlb'ute Attribute
§ A i~ prediction Masking Bradicion
& B -t ot
@ +|=|++ h +"+,, =" =m ++f' Structural
6| R = || 5 e = Structure Context L
£ | S — " e rediction Prediction aimlianty
o Q > a 0 P Prediction
gp == Graph embeddings © A ® Node embeddings  ----- Linear classifier

Hu, Weihua, et al. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265 (2019).



\ Supervised Graph Pre-training

> Influence of Pre—training on the Scaling Laws
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Chen, Dingshuo, et al. Uncovering neural scaling laws in molecular representation learning. NeurIPS 2023.
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\ Unsupervised Graph Pre-training

F [MASK] is impossible. |

v

: Nothing is impossible. ‘

I'm going outside.

T'll be back soon.

I got up late.

* Regular grid space

« Sample
iIndependency

Liu, Yixin, et al. Graph self-supervised learning: A survey. TKDE 2022.

 Non-Euclidean

space

* Node dependency

24



Unsupervised Graph Pre-training

Predictive—based methods acquire supervision signals from
the node-, link— and graph-level properties which can be
obtained from the graph freely.

Auxiliary Properties Predicted Properties

Prediction Loss
2 &

Property

t Extraction T
2, 1] \
D~ fan/ \ Pretext
\7& 4 0| E“C;de'" —- ~»  Decoder
Y (e f’ Ps
L o — hoad _‘_-J
Input Graph Representations

Liu, Yixin, et al. Graph self-supervised learning: A survey. TKDE 2022.



Predictive-based

Jin et al. first deepen understandings on when, why, and
which strategies of self—supervised predictive—based work
with GNNs by empirically studying numerous basic pretext

tasks on graphs.

Table 3: Performance evaluation of using SSL for GNNs.

Model

Joint Training

| Two-stage Training

Cora Citeseer Pubmed

Cora Citeseer Pubmed

GCN
GCN-DroppedGraph
GCN-PCA

81.32 71.53  79.28
81.03 71.29  79.28
81.74 7038  78.83

81.32 71.53  79.28
81.03 7129  79.26
81.74 70.38  78.83

NodeProperty
EdgeMask

81.94 71.60 79.44
81.69 71.51  78.90

81.59 71.69 79.24
81.44 7157  79.33

PairwiseNodeDistance
Distance2Cluster

83.11 71.90  80.05
83.55 71.44  79.88

82.39 72.02  79.57
81.80 71.55 79.51

AttributeMask
PairwiseAttrSim

81.47 70.57  78.88
83.05 71.67 79.45

81.31 70.40  78.72
81.57 7174  79.42

Jin, Wei, et al. Self-supervised learning on graphs: Deep insights and new direction

26

. arXiv preprint arXiv:2006.10141 (2020).



\ Predictive—based | S2GRL

. S2GRL

o Predicted property: shortest path.

o They randomly select pairs of nodes in a graph and train a well-designed neural
network to predict the contextual position of one node relative to the other.

er

™ T 1
| Objective: predict hop counts = -

! = o2 - o P B S |
I Z: dz. St zj <// Z: o Zj TR / zi & - |
| z; i zZ; i Q L] _® e @& - |
I = - - o A - ey < N |

— " — g -

: - e e \ r Py o= :
I

| 1-hop context 2-hop context 3-hop context k-hop context I
|

| i<z, 2, y=0)] [n(<zi, 2, y=1)] h(<z;, z7, y=2) L i<z, 2>, y=k-1)] :
L

Peng, Zhen, et al. Self-supervised graph representation learning via global context prediction. arXiv preprint arXiv:2003.01604 (2020).



\ Contrastive-based

Motivation

o Contrastive-based methods are built on the

idea of mutual information (MI)
maximization, which learns by predicting
the agreement between two augmented
instances.
Components

o Graph Augmentations

o Graph contrastive pretext tasks

o Mutual information estimation

Liu, Yixin, et al. Graph self-supervised learning: A survey. TKDE 2022.

Augmented Graph

Augmented Graph

[ T '-l"l‘..-:‘.‘.H :- )
' .\_‘_ %, ., Encoder | _
\ / N, D fo
D / v

T

f Augmentation

o~/ i/ \ Inpu-r

Representations

E—

v
1 Learned Target
Agreements Agreements

Pretext ontrastive
Pg

\ /‘\ o Graph
oo O~ o7 (Positive/
Negative)
4 Augmentation I g‘_;
—~— \ :
|~/
7(‘*/ \ o [Encoder | _
\ / \ o fg
= ../;f: '

Representations
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Contrastive-based | DGI

Motivation of DGI

o DGl relies on maximizing mutual information between patch representations and
corresponding high-level summaries of graphs.

o The learnt patch representations summarize subgraphs centered around nodes of
interest, and can thus by reused for downstream node-wise learning tasks.

Velickovié, Petar, et al. "Deep graph infomax." arXiv preprint arXiv:1809.10341 (2018).

29



Contrastive—-based | GraphCL

You et al. first design four types of graph augmentations in graph
contrastive learning. And they systematically study the impact of various
combinations of graph augmentations on multiple datasets.

Add & Delete Edge
Drop Node & Edge

Projection
Head g()

Maximize
Agreement

Projection _\
Head g() "x|

'
vy,

Shared GNN-based Encoder

@ Embeddings

You, Yuning, et al. Graph contrastive learning with augmentations. NeurIPS 2020.



Contrastive—-based | GraphCL

> Graph data augmentation:
o NodeDrop, Subgraph, EdgePert, AttrMask

> Observations

o Data augmentations are crucial in graph contrastive learning.
o Composing different augmentations benefits more.
o Edge perturbation benefits social networks but hurts some biochemical molecules.
o Applying attribute masking achieves better performance in denser graphs.
o Node dropping and subgraph are generally beneficial across datasets.
NCI1 i PROTEINS COLLAB RDT-B High
Identical{0.42 1.25 -0.17 -1.44 2.47 2.27 1.01 1.07 -0.74 1.66 1.39 0.85 0.17 -0.26
AttrMask{0.03 1.20 -0.62 -1.05 -1.14 2.43 1.89 0.85 1.15 1.51 1.37 1.53 0.47 -0.36 0.25
EdgePert{-1.26 1.95 .;?1'.1'8’. 1.74 1.52 0.97 0.34 0.71
Subgraph{1.63 1.17 2.10 1.90 1.62 1.13 1.50 1.25 1.06 1.39
NodeDrop{0.85 1.57 -0.86 -0.59 -0.17 1.85 1.45 1.66 1.53 1.31
Low
@b&‘o‘;&& bcgge‘l‘" & \&"‘i@ F Qip"?bia Cgéze,@@&c;%\be&@ a1




Contrastive-based | GRACE

Inspired by the success of self-supervised learning in CV, like SImCLR,
Zhu et al. proposed GRACE for unsupervised graph representation
learning by leveraging a contrastive objective at the node level.

Original features

Corrupted features

~—— Positive pairs

S Negative pairs (intra-view)

<---= Negative pairs (inter-view)

32
Zhu, Yanqiao, et al. Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131 (2020).



Contrastive-based | GRACE

Graph data augmentation
o GRACE firstly generates two graph views by randomly corrupting the original graph.

Learning objective

o Then, GRACE employs contrastive objective that enforces the encoded embeddings
of each node in the two different views agree with each other and can be
distinguished from embeddings of other nodes.

69(1&1,1}{)/’7'

N N
eﬁ(ui,vé)/'r _I_ ]1. L ieg(‘u..;,vk)/‘r_l_ ]]-k ieﬁ(ui,uk)/'r
$ . o k] [k#1]
k=1

l(u;,v;) = log

?

W
the positive pair \kj =1 =

inter-view negative pairs intra-view negative pairs

>

1 N

T= 5= > [e(wi, v) + £(vs, w))].

1=1 33



'Contrastive-based | GCA

> @Graph data augmentation

o Previous work ignores the discrepancy in the impact of nodes and

edges when performing data augmentation.

e

G = (XA) \ //

f(g) (X1, A1)

f/

4 M

GNN
U=f(G)

/f(g) (e, Az) \-«000

V=£(G)

e o« 1o
‘ o*. o ‘ o
b = = e oo
=" =" .. —-“so""...
L ] L ] .' L3
(a) Degree (b) Eigenvector (c) PageRank
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Generative-based

Generative—based methods inputs a perturbated graph. And in the
pretext task, a generative decoder tries to recover the original graph
from the representation, with a loss function aiming to minimize the
difference between the reconstructed and original graph.

Input Graph Reconstructed Graph
. —_— I - Ll
4 Y\  ReconstructionLoss /7/4 v\
\ / N\, m b i \ N
- — -
l» Perturbation T
/ _7/ \ I Pretext
\\"“ D - Enc;der' l — -+  Decoder
.' g
// ' Pg )
Perturbed Graph Representations

Liu, Yixin, et al. Graph self-supervised learning: A survey. TKDE 2022.
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Generative-based | VGAE

Inference model
o VGAE tasks a simple inference model parameterized by a two-layer GCN

d(Z| X, A) =T[L, q(zi | X, A), with g(zi| X, A) = V(2| p;, diag(a?))

Generative model
o The generative model of VGAE is given by an inner product between latent variables

N N .
p(A|Z) =[1;5, I1,=, p (Aij | 2i,25) , with p(Ay = 1]z, 2;) = o(z] ),

Learning
o Optimize the variational lower bound w.r.t. the variational parameters
L =Eqyzx,a)|logp(A|Z)] —-KL[g(Z|X,A)||p(Z)],

36
Kipf, Thomas N., and Max Welling. "Variational graph auto-encoders." arXiv preprint arXiv:1611.07308 (2016).



'Generative-based | GraphMAE

> Inspired by CV and NLP

o While contrastive SSL methods have experienced an emergence in graph learning,
generative SSL has been gaining steadily increasing significant thanks to several
groundbreaking practices, such as BERT and GPT in NLP as well as MAE in CV.

Mask E E- Re-mask GNN Decoder E Eeguﬂa Iiec_ons_trgc ti_on_\
Node code : : [DMASK] Reconstructed Features : o 9 .
Features : : : . 2
P! 2 (5)
e o [ i [ © = o K0
: : N : x40 (4)
_________________________ : :_____________________________: Scaled Cosine Error(3i, X;)
-& ]
777777777777777777777777777777777 :_._ifﬁﬁ"ﬁVﬁ"”m*"”””*”ﬁ"*”*ﬁL_:"ﬁ1Lin{1€f{écfo}1§t}ﬁ6tfo}{”:

___________________________________________________________

37
Hou, Zhenyu, et al. Graphmae: Self-supervised masked graph autoencoders. SIGKDD 2022.



Generative—based | GraphMAE

Objective

o Instead of reconstructing both features and structure, which unfortunately does not
empower GAEs to produce significant progree, GraphMAE aims to reconstruct node
features.

Weak Decoder

o Traditional GAEs employ either no neural decoders or a simple MLP for decoding with
less expressiveness, causing the latent code to be nearly identical to input features.
Therefore, GraphMAE utilizes re-mask decoding to process the latent code for
decoding.

New Loss Function

o MSE could suffer from the issues of sensitivity and low selectivity. Therefore,
GraphMAE leverages the cosine error as the criterion to reconstruct original node
features.

38
Hou, Zhenyu, et al. Graphmae: Self-supervised masked graph autoencoders. SIGKDD 2022.



'Generative-based | GraphMAE2

» Limitation of GraphMAE

o The reconstruction of masked features fundamentally relies on the
discriminability of the input node features.

> Solution
o Impose regularization on target reconstruction.

Latent target
S : 5 =~ _ [T
o — | MifPeietr | 2 X “x) |
y A [MASK] 0 [ | eeEmees
OO z,x
OIS P oo o —
. 0 1
| = | 6y Y e AR | T o %
T4\ ! . o : Shared : ¢—_> 'Cm?mt( » X)
A NN )/_ Mask o i e TR | GNN decoder | X :
e & [ : - L — z(1)  Input feature
Local ' [DMASK] N~ - - —— “
cluster GNN encoder code

. Multi-view _random re-mask

g(A, X)
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Generative-based | WGDN

Motivations

o Generative models weaponed with powerful decoder could achieve comparable or
even better representation pwoer than contrastive models.

o A powerful decoder should at least remain effective against augmentations.

e el e e e e e T e et e e e el e S
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40
Cheng, Jiashun, et al. Wiener graph deconvolutional network improves graph self-supervised learning. AAAI 2023.



Limitations

Hard to transfer

o Graph structure is extremely diverse. Graphs inherently exhibit diverse
topologies and features, making it challenging to identify and leverage
common patterns across different domains.

o Features in one graph mighthave no direct counterpart in another, making it
incredibly challenging to align these features in a meaningful way.

Not versatile

o Graph Neural Networks is hard to conduct multiple downstream tasks
simultaneously.

41



Advanced Pre-training | GCOPE

Motivation

o Tranferring from a single source dataset does indeed negatively affect
the target task. In order to overcome this obstacle, it is necessary to

expand the scope of the source dataset so that it can offer valuable
insights for the downstream task.

0..

= —10 A

Improvement (%
o
<

|
o8}
o

From Pubmed
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'Advanced Pre-training | GCOPE

> Aligning Graphs by Coordinators

o Feature Projection (singular value decomposition and attention

mechanism). %) = proj(x) e 1V |xds

o Graph Coordinators

A _ Adiag R}; R(I) (J) _ 1 le |(V(k)| <j< Zi+1 |(V(k)|
2 RR]’ = 0 otherwise.

o Learning Objective

exp(sim(h(PS(X, A, a;)), h(PS(X, A, aj))/t)

og : == — +IX = X2
2. exp(sim(h(PS(X, A, a;)), h(NS(X,A,a;))/7)

L=-1
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'Advanced Pre-training | GCOPE

> Overview of GCOPE

A Contrasti PubMed 6 Pre-
ori astive 8(500) Ceaincd
088 & GNN
GNN & o 3 OR
Reconstruction
Loss & & ® P_re-
& trained
GNN

Transferring

Nodes Coordinators @ Projection & Tuned

Zhao, Haihong, et al. All in one and one for all: A simple yet effective method towards cross-domain graph pretraining. SIGKDD 2024.

Downstream
Task

Graph
Prompt

@) Frozen

44



'Advanced Pre-training | GCOPE

> Cross—domain transfer learning performance

Table 2: Cross-domain transfer learning performance (meantstd Acc/AUC/F1) on homophilic datasets (C-way-1-shot). IMP (%):
the average improvement of GCOPE over the rest. GCL and Sim respectively represent GraphCL and SimGRACE.

Training Method Cora Citeseer Pubmed Computers Photos
ethods
schemes Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1
GCN 0.3012:06 0.6444:04 0.2591:04 | 0.4358:00 0.7234:07 0.3583:10 | 0.4210:z01  0.6040:06 0.3026:.04 | 0.2602:07 0.6773:02 0.2428:04 | 0.4603:04 0.8458:01 0.4592:.04
ised GAT 0.3646+04 0.6769:03 0.3108+04 | 0.3695+05 0.7232+06 0.3305+04 | 0.4209+04 0.5710+06 0.3227+07 | 0.3482+07 0.6878:05 0.2397+05 | 0.4742+08 0.8213+02 0.4498+.07
supervise
P BWGNN 0.2543:05  0.5563:03 0.1971:02 | 0.3599:07 0.6954:05 0.3112:06 | 0.3976:03 0.4934+03 0.2686+04 | 0.2768:05 0.6273:03 0.1864:03 | 0.4113204 0.7769x00 0.3883+.01
FAGCN 0.3819:03  0.6818:04 0.3009:00 | 0.5219:08 0.8042:03 0.4667:08 | 0.4522:02 0.5622:04 0.4275:07 | 0.4651:04 0.7762:02  0.3009:07 | 0.5937:05 0.8847:00 0.5346:.03
P GCL+GCN 0.2507+06 0.6350:03 0.2240:03 | 0.3140:02 0.6661+04 0.2397:02 | 0.4217:02 0.5257+05 0.2896+07 | 0.2856+04 0.6467:03 0.1653:06 | 0.5533201 0.8661+01 0.5217:01
GCL+FAGCN | 0.3892:05 0.7228:03 0.3619:0s | 0.4461+02 0.7781:01 0.4126:02 | 0.4532:02 0.5708+03 0.4168+04 | 0.4371:06 0.7616:01  0.3450:02 | 0.6273z01 0.8710+01  0.5406+.03
+
finetun Sim+GCN 0.2492:02  0.5765:03  0.1567:04 | 0.2950:06 0.6203:06 0.1812:06 | 0.3980:01 0.5067+02 0.2805x.01 | 0.2666+10 0.6286:01  0.1603:03 | 0.4290:04 0.7645:02  0.3955:.02
netunin,
& Sim+FAGCN | 0.3957+03 0.7284:02 0.3585+01 | 0.5101+03 0.7969+01 0.4615:04 | 0.4398+01 0.5535+01 0.4225:02 | 0.4393:01 0.7718:0z 0.3100:.02 | 0.5704:02 0.8543+02 0.4984+01
GCOPE GCL+GCN 0.3368:02  0.6971:04  0.2967:03 | 0.3701+03 0.7066+02 0.3265:05 | 0.4443:04 0.5888+04 0.4242:04 | 0.3439:03  0.7023:01  0.2976:03 | 0.5635+02 0.8733:00 0.5480+.02
GCL+FAGCN | 0.4618:03 0.7597:05 0.4388z05 | 0.5631+03 0.8258:02 0.4953:04 | 0.4591:x01 0.5512:01 0.4203:03 | 0.4465+01 0.7747:00 0.3432:03 | 0.6329:02 0.8850+00 0.5935:.03
+
finetuni Sim+GCN 0.2525:05  0.5744:03  0.1722:00 | 0.3475:05 0.6527:05 0.2704z05 | 0.4116:00 0.5166+04 0.2994:03 | 0.3230x01  0.6994:00 0.2515:00 | 0.4772203  0.7851x01  0.4277:02
netunin,
& Sim+FAGCN | 0.3875:0¢4 0.7163:03 0.3355+08 | 0.5704+04 0.8425:01 0.5178:04 | 0.4727+03 0.5587+03 0.5672:03 | 0.4677=0¢4 0.7875:01 0.3823:02 | 0.5985:+02 0.8757+02 0.5556+.05
IMP (%) 11.23% 5.23% 14.63% 13.81% 4.26% 16.59% 5.02% 0.99% 25.32% 13.79% 6.28% 30.70% 10.31% 2.30% 12.18%

Zhao, Haihong, et al. All in one and one for all: A simple yet effective method towards cross-domain graph pretraining. SIGKDD 2024.
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> Motivation
» Categorization of Combining LLM with Graph

o LLM as Enhancer
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> Future Directions




Motivation
Large Language Models (LLMs)

2 Non-autoregressive.
Encoder-only LLMs.
Masked language modeling

o Autoregressive.
Encoder-decoder LLMs.
Decoder-only LLMs.
Next token prediction

o Applications:

NLP tasks -> machine translation, text classification.
Other modality tasks -> images, videos

49



\ Motivation

» Integrating LLMs with traditional GNNs can be
mutually beneficial and enhance graph learning.

2 GNNs -> constrained embeddings as node features
o LLMs -> struggle to capture structural information
2 Combining GNNs with LLMs ...

Li1Y, LiZ, Wang P, et al. A Survey of Graph Meets Large Language Model: Progress and Future Directions. [JCAI 2024.
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\ Motivation

> The integration of GNNs and LLMs across a myriad of
domains

Multi-domain Downstream Tasks
6raph Datasets |
—————————— 1 6raph+LLMs r -~ N
== e e——————— ?N Lmk
” R Graph Neural Q/\O Prediction
‘% Citation Network setwark L )
<) (" h
1 [ | =
t | \_ J

B

(A - . )
:@: Reasoning
\ Y,
( - )
@ Recommendation
\ y,

%z* Molecular Graph

==
]

Large Language
Model

) S ) J
— — — — — — — — — — — — — —
— — — — — — — — — — — — — — —
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Different roles played by LLMs

LLM as enhancer
o Aiming to enhancing the quality of /@ Text Attributes — §
- . H v i & =Tuned ' = Frozen ;
node embeddings with the helpof / ¢ A o
1 LLM ] { y = Optional Operation |
powerful LLMs. i ;
. L . |
o Explanation-based enhancement. Exlzllla“atlon (=) Text Atibutes
Enhancement: ¢e; = fLLMm (ti,p), X; = fLM(Bi,ti), \>L ” LM ] [ 6 LLM ]
Graph Learning: H = fonn (X, A),
@ Embeddmgs Graph m Embeddmgs
o Embedding-based enhancement. S
(B o ot {Bow ]
Enhancement: x; = frim(t;),
(a) Explanation-based (b) Embedding-based

Graph Learning: H = foun (X, A).

52

Li1Y, LiZ, Wang P, et al. A Survey of Graph Meets Large Language Model: Progress and Future Directions. [JCAI 2024.



LLM as enhancer | TAPE

Citation Networks
a Text-rich graphs.

o Each node represents a paper, and its corresponding textual description
(e.qg., title and abstract) is treated as the node's text attributes.

Retrieval-Augmented
o Leveraging LLMs to enhance more explanations for each node.

Abstract: [paper abstract]

Title: [paper title]

Question: [ask the model to predict one or more class labels of the paper, ordered from most
to least likely, and provide explanations for its predictions]

Answer:

He X, Bresson X, Laurent T, et al. Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representationdzearning.
ICLR 2024.



'LLM as enhancer | TAPE

» Pipeline

Step 1: Node Feature Extraction Step 2: Downstream Tasks
Prediction: ¢s.CV, cs.IR, ¢s.CL, ¢s.LG, cs.Al. on TAGs

Explanation: The paper is about a new dataset for scene text
detection and recognition, which is a topic related to computer vision
(cs.CV). The paper also mentions the use of deep learning techniques
such as DeconvNet, which falls under the sub-category of artificial
intelligence (cs.Al). The dataset is annotated and involves text

1

1

1

. - . - - 1
Abstract: Text in curve orientation, despite being one of !
1

1

1

1

1

1

1

recognition, which could also fall under the sub-categories of| 1
1

1

1

1

1

1

1

1

1

1

1

1

1

the common text orientations in real world environment...
Title: Total Text A Comprehensive Dataset For Scene Text
Detection And Recognition.

Question: Which arXiv CS sub-category does this paper
belong to? Give 5 likely arXiv CS sub-categories as a
comma-separated list ordered from most to least likely, in
the form "cs. XX", and provide your reasoning.

information retrieval (cs.IR) and natural language processing (cs.CL).
Finally, the paper discusses the effectiveness of different solutions,

Adsner: which could be evaluated using machin§ learning techniques, falling Graph Structure
/ under the sub-category of machine learning (cs.LG). 4
2 Pl

! ’ ' P t 4 hopred 1 "y
- ,Fromr LT TRl
I = — '
1 Prediction: \ ' !

: R 1
: Title: Quer] R LLM esponse LM Rezpi : GNN !
, | Abstract: GPT3.5 (175B) > | Explanation: Diberta : RevGAT —> Y |
1 R
I o (129M) Ty | (18M) 1
1 L rozen : / [
' ' !
\ %ble : Trainable A 4

He X, Bresson X, Laurent T, et al. Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representationdsearning.
ICLR 2024.



LLM as enhancer | TAPE

Experimental results

He X, Bresson X, Laurent T, et al. Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representationdgearning.

ICLR 2024.

Dataset Method GNN LM Ours
hshatlow hGIANT G171 LLM LM¢inetune L7 hTaPE

MLP 0.6388 +0.0213 07196 +0.0000  37.41% 06769  0.7606 +0.0378  13.35% | 0.8778 +0.0485
Cora GCN 0.8911+0.0015  0.8423 +0.0053  2.33% 06769  0.7606 +0.0378  16.59% § 0.9119 +0.0158
SAGE 0.8824+0.0009  0.8455+0.0028  528% 06769  0.7606+0.0378  18.13% | 0.9290 + 0.0307
RevGAT  0.8911+0.0000  0.8353+0.0038  4.14%  0.6769  0.7606 +0.0378  18.04% | 0.9280 +0.0275
MLP 0.8635+0.0032  0.8175+0.0059  10.77% 09342  0.9494+0.0046  0.75% § 0.9565 % 0.0060
PubMed GCN 0.8031 +0.0425  0.8419+0.0050  17.43% 09342 09494 +0.0046  -0.66% | 0.9431 +0.0043
SAGE 0.8881 £0.0002  0.8372+0.0082  830% 09342  0.9494 + 0.0046 1.31% | 0.9618  0.0053
RevGAT  0.8850+0.0005  0.8502+0.0048  852% 09342  0.9494 + 0.0046 1.15% | 0.9604 + 0.0047
MLP 0.5336+0.0038  0.7308 +0.0006  42.19% 07350  0.7361 £0.0004  3.07% § 0.7587 +0.0015
ogbn-arxiv GCN 0.7182+0.0027  0.7329+0.0010  471%  0.7350  0.7361 £0.0004  2.16% | 0.7520 +0.0003
SAGE 07171 +0.0017  0.7435+0.0014  6.98% 07350  0.7361 £0.0004  4.22% § 0.7672 +0.0007
RevGAT 07083 +0.0017 07590 +0.0019  9.42% 07350  0.7361+0.0004  528% | 0.7750 + 0.0012
MLP 0.5385+0.0017  0.6125+0.0078  463% 07440 07297 +0.0023  7.96% | 0.7878 +0.0082
o oroduct GCN 0.7052+0.0051  0.6977 +0.0042  1339% 07440  0.7297+0.0023  9.58% | 0.7996 + 0.0041
OgoNTRLocucts  gAGE 0.6913+0.0026  0.6869+0.0119  17.71%  0.7440 07297 £0.0023  11.51% | 0.8137 +0.0043
RevGAT  0.6964+0.0017  0.7189+0.0030  1824% 07440  0.7297 +0.0023  12.84% | 0.8234 +0.0036
MLP 0.6202+0.0064  0.5574+0.0032  3520% 07356  0.7358+0.0006  12.25% | 0.8385 +0.0246
e nriu23 GCN 0.6341 +0.0062 05672 +0.0061  27.42% 07356  0.7358 +0.0006  8.94% § 0.8080+0.0215
aperarxiv SAGE 0.6430 +0.0037  0.5665+0.0032  30.45% 07356  0.7358 £0.0006  12.28% | 0.8388 +0.0264
RevGAT  0.6563+0.0062  0.5834+0.0038  28.34% 07356  0.7358 £0.0006  12.64% | 0.8423 +0.0256




'LLM as enhancer | OFA

~ NOI (Node of Interest) prompt node

o Associated with a task prompt text, encoded by an LLM.

Text feature of the NOI prompt node: Prompt node. <task description>.
Example: Prompt node. Graph classification on molecule properties.
Example: Prompt node. Node classification on the literature category of the paper.

Supervised & Zero-shot Scenarios . Few-shot Scenario

(© Node of Interest
(NOI)

ﬁ NOI Graph

© NOI Prompt
Node

(O Class Node (/C)l\) /[\ /[\

(a) Node-level task (b) Link-level task (c) Graph-level task

Query NOI
Graph

TN

%% 05

Support
NOI Graphs

p2t and t2p q2c and c2q

— Feature Edge  '+«-- B — us

s2c Edge

Liu H, Feng J, Kong L, et al. One for All: Towards Training One Graph Model for All Classification Tasks. ICLR 2024.
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'LLM as enhancer | OFA

~ Few/Zero-shot Ability

o “In-context Learning”: It utilizes few-shot support examples by connecting the support NOI
prompt nodes to the corresponding class nodes to provide exemplary information.

Support
NOI Graphs

# Way ogbn-arxiv-5-way (Transductive) Cora-2-way (Transfer)
Task 5-shot 3-shot 1-shot 0-shot 5-shot 1-shot 0-shot
GPN 50.53+3.07 48.32+3.80 38.58+1.61 - 63.83+2.86 56.09+2.08 -
TENT 60.83+7.45 56.034+8.90 45.62+10.70 - 58.974+2.40 54.33+2.10 -
GLITTER 56.00+4.40 57.444+490 47.12+2.73 - - - -
TLP-BGRL 50.13+8.78 46.21+7.92 35.81+8.58 - 81.31+1.89 59.16+2.48 -
TLP-SURGL 77.89+6.46 74.19+7.55 61.75+10.07 - 92.494+1.02 81.52+2.09 -
Prodigy 61.09+585 58.6445.84 48.23+6.18 - - -

OFA-joint-Ir  61.45+2.56 59.784+251 50.20+4.27 46.19+3.83

[
76.10+4.41 67.4414.47' 56.9243.00
|

57

Liu H, Feng J, Kong L, et al. One for All: Towards Training One Graph Model for All Classification Tasks. ICLR 2024.



LLM as enhancer | ZeroG

Zero—-shot Transferability in Graphs

o This trend of zero-shot capabilities in machine learning, particularly after the
advent of foundation models such as LLMs, has demonstrated considerable
advancements in the field of Al.

o NLP field: generative paradigm, such as LLaMA, GPT-series, ...
o CV field: retrieval paradigm, such as CLIP, ...

o In Graph field, zero-shot transfer is also important since:
1. The emergence of new graphs.
2. The difficulty of human labeling.

o We focus on cross-dataset zero-shot transferability in graphs.

.. Zero-shot Inf :
Training: Graph A e . Testing: Graph B

58
L1Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.



'LLM as enhancer | ZeroG

> Dimension Misalighment
o Shallow embedding: bag-of-words, skip-gram, TF-IDF, ...

» Mismatched Label Spaces
o GNN’s classification head is fixed to the number of classes during pre-training.

> Negative Transfer
o Fully adapting graph models to source graphs often causes overfitting.

. . .. e, - 59
L1Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.



'LLM as enhancer | ZeroG

» Step1: Unified Graph

(a) Title: Total Text A

Representatlon Comprehensive Dataset ... E _— —_— J
. . Abstract: Text in curve
- Use d unlfled pre'tralned I—I—M to orientation, despite being one Source Text Embeddings
encode both node attributes and of the common text - Textual Item
descriptions associated with classes.
o ] Theory: This category covers -
o A unified semantic space. theoretical aspects of - — —
machine learning and Al
Reinforcement Learning: Source !
This category includes... Class Des CI’ipti on Class Embeddlngs

- Step2: Prompt-based @ - @ @ -\
Subgraph Sampling (b) N
et @% R

o Retricted Extraction ¢ \ﬂb
o S
R

o Prompting Node S .
o Neighborhood Aggregation o1 L~ Nﬁ,‘;ﬁi{f‘%ﬁ“

______________________________

Source Graph G

mm——

60
L1Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.



'LLM as enhancer | ZeroG

> Step3: Upstream Pre—training
o PEFT strategy: LoRA.
o Cross-entropy loss

) exp (sim (hy, hyn))
-Epre (©) =- Z Z log ZceYs exp (sim (hy, h¢))

S€ Tpre NENs

> Downstream Inference

o The class that yields the highest
similarity score is predicted to be
the class of the node.

y" = argmax; (sim(h,, he,) | i € {1,...,N})

Upstream Pre-training

Pretrained

‘ +) +— J —

Neighbor-aware Output 1Till
Embeddings — = Embeddings .
Semantic
LoRA Fine-Tuning Similarity Loss
Downstream Inference
|
Target Q’;Q‘\:Q
Textual Item it .
LMs &

Prompt-based
Target Graph
Class Description

61

L1Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.



'LLM as enhancer | ZeroG

> In-domain Transferability

» Cross—domain Transferability

Methods ‘ A S | Cora Pubmed Citeseer ‘ P-Home P-Tech Test | Pre-training | OFA  In-D ZEROG
DGI [56] VX | 1997 4389 21.12 3306 5583 _Wiki-CS | P-Home U P-Tech | 2109 - 60.97
GraphCL [63] v X | 2622 4373 20.59 37.44  62.63 Cora | P-Home U P-Tech | 1857 68.72  67.65¢1.07%)
GraphMAE[19] | v X | 3479 4823 3462 | 3704 7337  pybmed | P-Home U P-Tech | 31.89 7802  69.120s50%
BERT [12] X v/ | 199 3479 2376 | 3732 5644  Citeseer | P-Home UP-Tech | 2078 64.94 53.17¢1177%)
BERTa [34 28.91 A ; . D1
NoEERIald] | X ¢ (280 733 3095 3050663 P-Home | Arxiv U Cora U Pubmed U Citeseer | 35.73 73.20  71.45¢175%)
E5 [58] X v | 39.70 41.93 45.89 57.56 59.17
Sent-RERT |40| X / 59 9K 41.71 47,52 £2 99 A7 91 P-Tech | Arxiv U Cora U Pubmed U Citeseer | 62.10 82.96 83.20(:0.24%)
OFA [31] v /| 27.07 37.87 37.92 32.86 71.03 R
»  Ablation Study
ZEROG (ours) | v v/ | 6872 78.02 6494 | 7320 82.96
Methods | Cora Pubmed Citeseer ‘ P-Home P-Tech
semi-supervised settings
ZEROG | 68.72 78.02 6494 | 73.20 82.96
GCN* 23] T | 8107900 70.30 73.85 93.28 -(w/op) | 68.25c0arm) 7649153  61.64330%) | 70.46(274m)  79.68(7.18%)
GAT™ [55] - - | 83.00 79.00 72.50 73.46 88.89
- (w/o NA) | 43.31(25.43%) 47.21(3081%7) 48.68(-16.26%) ‘ 60.26(-12.94%)  58.91(-27.95%)
- (w/onorm) | 544313300 39.25(s877%)  34.84(3010%) | 41.26(3104%)  72.17(1460%)
- (w/o LoRA) | 17.36(51.36%) 46.49(31.35%)  23.98(-10.96%) ‘ 39.77(-33.43%)  87.22(+4.26%)
62

L1Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.



Different roles played by LLMs
LLM as predictor

a Almlng to utilize LLMs to make Graph Text Graph ljﬂ] Initial
predi ctions for a wide ran ge of Struczl/ture Afjt/nbutes Struiture Fiatures
graph-related tasks, within a [ Flattening } [ & o ]
unified generative paradigm. v J

g Sequence Graph
5 Flatten-based prediction. renon 2ipos | [leiatt
Graph Flattening: Gseq = Flat(V,E,7,J), v . v
Prediction: Y = Parse(fLim(Gseq, D)), [ /h LLM ] _>k h LLM ]
T Flatten-based b) GNN-based
o GNN-based prediction. (2) Flatten-base ®) e

Graph Learning: H = fonn (X, A),
Prediction: Y = Parse(fuim(H,p)),

63
Li1Y, LiZ, Wang P, et al. A Survey of Graph Meets Large Language Model: Progress and Future Directions. [JCAI 2024.



'LLM as predictor | NLGraph
> NLGraph Benchmark

o Graph reasoning tasks, such as shortest path and cycle detection.

1 Connectlvrty ~ /—‘ 2. Cycle ~N (—i 3.Topolog|'caISort[ ~ /—{ 4. Shortest Path ~

o0 @@\’@

Determine if there is a path between In an undirected graph, (i) means that In an undirected graph, the nodes are
two nodes in the graph. Note that (i,j) nodg i and node j are connected with an | | In a directed graph with 5 nodes numbered from 0 to 4, and the edges are:
means that node i and node j are undirected edge. numbered from 0 to 4: an edge between node 0 and node 1 with
connected with an undirected edge. The nodes are numbered from 0 to 5, node 0 should be visited before node weight 2, ...
Graph: (0,1) (1,2) (344) (4,5) and the edges are: (34) (3,5) (1,0) (2,5) 4,.. Q: Give the shortest path from node 0 to
Q: Is there a path between node 1 and (2,0) o Q Can all the nodes be visited? Give the | | node 4.

node 47 ) \Q: Is there a cycle in this graph? ) \SO[U(’IOI‘L ) )

5. Maxi Flow ~ {6. Bipartite Graph Matching% ,—‘ 7. Hamilton Path /—i 8.GNN ~
job applicants @ . »
O s @ F— >
4,
10 l

(o) jObs@@

1
—CG [o11]
’ There are 4 job applicants numbered ;

In a directed graph, the nodes are from 0to 3,Jand E?obs numbered from In an undirected graph, (i,j) means that In an undirected graph, the nodes are

numbered from O to 3, and the edges 0 to 4. Each applicant is interested in node i and node j are connected with numbergd frqr_n 0 to 4, and every rlode has an

are: A some of the jobs. Each job can only an undirected edge. embedding. (ij) means that node i and node |

an edge from node 1 to node 0 with accept one applicant and a job The nodes are numbered from 0 to 4, are conngcted with an undirected edge.

capacity 10, ) applicant can be appointed for only one | | and the edges are: (4,2) (04) (4,3) (0,1) Embeddings: node 0: [1,1], -

an edge from node 0 to node 2 with job. (0,2) (4,1) (2,3) The eldges are: (0,1) ... .

capacity 6, . Applicant 0 i interested in job 4, ... Q ;5 there a path in this graph that Ina s!mple graph cgnvoluhon layer, each

an edge from node 2 to node 3 with Q: Find an assignment of jobs to visits every node exactly once? If yes, .node.s embedding is u‘pdated by the sum of

coHpaay 4, . applicants in such that the maximum give the path. Note that in a path, it nelghbors” embeddings,

Q: What is the maximum flow from node UTDEF G applicants find the job they adjacent nodes must be connected Q: What's theﬂembeddmg of each qode after
\1 to node 37 |_are interested in. L with edges. \one layer of simple graph convolution layer? )

Wang H, Feng S, He T, et al. Can Language Models Solve Graph Problems in Natural Language? NeurIPS 2023 spotlight.



'LLM as predictor | NLGraph

> Input & Output
o Shortest path, GPT-4:

In an undirected graph, the nodes are numbered from 0
to 5, and the edges are: An edge between node 2 and
node 0 with weight 2, An edge between node 0 and
node 4 with weight 1, An edge between node 1 and
node 2 with weight 4, An edge between node 1 and
node 3 with weight 4, An edge between node 4 and
node 1 with weight 4, An edge between node 2 and
node 3 with weight 1, An edge between node 2 and
node 5 with weight 2, An edge between node 2 and
node 4 with weight 3, An edge between node 5 and
node 3 with weight 2, An edge between node 3 and
node 4 with weight 3, An edge between node 4 and
node 5 with weight 2.

Q: Give the shortest path from node 3 to node 0.

All the paths from node 3 to node
0 are: 3,2,0 with a total weight of 1
+ 2 =3, 3,1,2,0 with a total weight
of4+4+2=10, 3,4,0 with a total
weight of 3 + 1 =4, 3,4,2,0 with a
total weightof 3 +3 +2 =28, 3,5,2,0
with a total weightof 2+ 2 + 2 =6,
3,5,4,0 with a total weight of 2 + 2 +
| =%,

The weight of path 3,2,0 is the small-
est, so the shortest path from node 3
to node 0 1s 3,2,0 with a total weight

of 3.V

65

Wang H, Feng S, He T, et al. Can Language Models Solve Graph Problems in Natural Language? NeurIPS 2023 spotlight.



'LLM as predictor | NLGraph

> Insights

o LLMs have (Preliminary) graph reasoning abilities.

Methid Connectivity Cycle Shortest Path
Easy Medium Hard Avg. Easy Medium Hard Avg. Easy Hard Easy (PC) Hard (PC) Avg.
RANDOM 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 6.07 6.69 14.73 13.81 17.81
ZERO-SHOT 83.81 72.75 63.38 71.31 50.00 50.00 50.00 50.00 29.40 21.00 46.00 26.76 30.79
FEW-SHOT 93.75 83.83 76.61 84.73 80.00 70.00 61.00 70.33 31.11 26.00 49.19 35.73 35.51
CoT 94.32 82.17 77.21 84.57 84.67 63.33 5325 66.75 63.89 29.50 76.84 35.79 51.51
At FObs =St =3 G -3 BT (o it OB FeS e62-30. 43:95——33-03
CoT+SC 93.18 84.50 82.79 86.82 82.00 63.67 53.50 66.39 68.89 29.00 80.25 38.47 54.15
757 70.6 20 -
== 15.3 —
- 51.7 54|4 50.5 easy 13.0 easy
Y 36.1 37.8 Y10 9.3 10.0
o l . 4.0
3l " /-
zero-shot few-shot 0-CoT CoT CoT+SC LT™M zero-shot few-shot 0-CoT CoT CoT+SC
201 18.4 101
EZ3 medium =21 hard
S 101 o 51 4.0
B 5.1 P < 2.5 2.0 2.0
/] . 09 &5 02 . I rA . )
zero-shot few-shot 0-CoT CoT CoT+SC LT™M zero-shot few-shot 0-CoT CoT CoT+SC

topological sort

maximum flow

Wang H, Feng S, He T, et al. Can Language Models Solve Graph Problems in Natural Language? NeurIPS 2023 spotlight.
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'LLM as predictor | Talk like a graph
»> GraphQA Benchmark

o Graph reasoning tasks, similar to NLGraph.
> Encoding Strategies

Real-world Scenarios!

Expert: You are a graph analyst and you have
been given a graph G amongA, B, C, D, E, F, G

(" Politician: G describes a social network graph among\

Adjacency: In an undirected graph, (i,j) means that node i Ehand iPGlhas thatollow e !
and r)ode j are connected with an undirected edge. G A,-:nB,P;-> C’a“_,ﬁ_g :wmg shaba ol B:?rack. Jimmy, Arnold, Bernie, Bill, Kamala, Hillary,
describes a graph among nodes 0, 1, 2, 3, 4, 5, 6, 7, and 8. Elizabeth, and John. We have the following edges in G:
The edges in G are: (0, 1) (0, 2) ... (6, 7) (7, 8). Barack and Jimmy are connected. ... Elizabeth and John
\_are connected. J
(e N g ;
Incident: G describes a graph among nodes 0, 1, 2, 3, 4, 5, :;g':é 'thr::;k' R?)bgftsct;gﬁ?\ aMsi(?r?;aa;I n%“;’\‘?i:jk ?\;223 h
e anq S e connecteq e Graph G Patricia Jennifér and Lir,lda. Wé have the’followin'g edges:
Node 1 is connected to nodes 0, 2. Node 2 is connected to ey ’ >
nodes 0, 1, 3,4, 5, 7. ... Node 8 is connected to nodes 3, 7. in G: James and Robert are connected. ... Jennifer and
4 \_Linda are connected. A
. . . . . ) I ) ’ ’ . ™\
Friendship: G describes a friendship graph among James, gOT- G d‘jscr'bses a glends::p Ql'c’éph among JN_ed, Cat,
Robert, John, Michael, David, Mary, Patricia, Jennifer, and aenerys, Jon, Bran, Sansa, Arya, Cersel, and Jaime.
Linda. We have the following edges in G: James and In this friendship graph: Ned and Cat are friends, Ned and
Robert are friends. ... Jennifer and Linda are friends. ) Daenerys are friends, Cat and Daenerys are friends, ...,
Cersei and Jaime are friends.
- 4
Co-authorship: G describes a co-authorship graph among SP: G describes a friendship graph among Eric, Kenny, Kyle,
James, Robert, John, Michael, David, Mary, Patricia, Stan, Tolkien, Heidi, Bebe, Liane, and Sharon. In this friendship
Jennifer, and Linda. In this co-authorship graph: James and graph: Eric and Kenny are friends, Eric and Kyle are friends ...,
Robert wrote a paper together. ... Jennifer and Linda wrote Heidi and Bebe are friends, Bebe and Liane are friends, Liane and
a paper together.. Sharon are friends.

Fatemi B, Halcrow J, Perozzi B. Talk like a Graph: Encoding Graphs for Large Language Models? ICLR 2024.



LLM as predictor | Talk like a graph
Insights

o Graph encoding functions have significant impact on LLM reasoning.

Method | Encoding | Edge Existence Node degree Node count Edge count Connected nodes Cycle check
Overall (14/6) 44.5/9.4 14.0/16.0  21.73/8.6 12.4/438 14.7/11.0 76.0/13.2
Adjacency 45.8 18.8 14.0 19 8 71.6
S Incident 39.6 25.0 15.6 10.6 |_513.8 68.8
a Co-authorship 44.0 : 22.0 11.4 6
S Friendship 46.6 11.2 23.0 4.0 82.0
% SP 46.4 9.0 22.4 15.0 6.2 ;
N GOT 49.0 13.6 22.8 : 7.6 79.0
Social network = 16.0 2 10.8 8.2 81.2
Politician 44.6 15.2 11.6 8.8 81.0
Expert 41.2 10.0 2470 14.8 16.4 69.6

o As a result, it becomes important to translate a given task into more
contextually meaningful textual information when employing LLMs for
inference.

Fatemi B, Halcrow J, Perozzi B. Talk like a Graph: Encoding Graphs for Large Language Models? ICLR 2024.



'LLM as predictor | GraphWiz

> Motivation 1: Graph Size Limitation
o Support more nodes and edges

» Motivation 2: Solve Graph Problems Explicitly
o CoT ability => Explicit Reasoning Path.

> Motivation 3: Training, not only Inference

o Existing works only focus on inference close-sourced LLMs.
o Can we train our own LLMs for graph reasoning?

69
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LLM as predictor | GraphWiz

Goal

We aim at leveraging instruction-tuning to build a powerful instruction-following LLM
that can map textural descriptions of graphs and structures, and then solve different
graph problems explicitly in natural language

Input

0-9 3
. 7 G-Q: Determine whether two nodes are connected in an
5 undirected graph. In an undirected graph, (i,j) means that
3045 6 node i and node j are connected with an undirected edge.

Explicit Reasoning Path

R: Node 7 is connected to node 1, node 1is
connected to node 5, node 5 is connected
to node 9. We can follow the path: [7->1->5-
>9], so the answer is yes.

The nodes are numbered from o to 9, and the edges are:

Connectivityt (0)1) (017) (0)6) (1;7) (115) (116) (5;9) (2'8) (214) (213) (3!8) Is
task-specific Q there a path between node 7 and node 9?

What we do

o Tackle the data challenge: Graphlinstruct (G-Q-R).
o Explore training strategies: Mix-tasked Instruction Tuning and DPO.
o In-Depth Analysis: Data Amount, Transferability, GraphWiz limit, etc.

Chen N, L1Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.
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'LLM as predictor | GraphWiz

> Graphinstruct-Tasks

m Problem Definition Time Complexity Weighted? Directed? Node Range Difficulty
1. Di Distributi Cycle Detection  Detect if a given graph G contains any cycles. o(|V|+18&]) X X [2, 100] Easy
- Diverse Distributions. Connectivity Assess if two nodes u and v in a given graph G o(|V|+1&]) X X [2, 100] Easy
Node range and edge are connected via a path.
denSIty Bipartite Graph Judge if a given graph G is bipartite. o(|V|+18&]) X v [2, 100] Easy
Check
2. Length Constraints: No Topological Sort  Find a topological ordering of vertices in a di- o(|V|+1&]) X v [2, 50] Easy
more than 4K rected acyclic graph G.
Shortest Path Compute the shortest path between two specific  O(|&]| + |V|log|V|) v X [2, 100] Medium

nodes u and v in a given graph G.

3. Unique Instances -

Maximum Trian- Find the maximum sum of weights for any con- o(|V?) v X [2, 25] Medium
. gle Sum nected triplet of vertices in a given graph G.
4. Scalable Graph Sizes. ) ) ; —
Maximum Flow  Calculate the maximum flow from a source node O(|V|*+/IE]) v v [2, 50] Medium

s to a sink node ¢ in a directed graph G.

Hamilton Path Determine if a given graph G has a Hamiltonian NP-Complete X X (2, 50] Hard
path that visits each vertex exactly once.
Initial 27k g raph prOblem (G'Q) Subgraph Match-  Verify if there exists a subgraph in G that is iso- NP-Complete X v (2, 30] Hard
ing morphic to a given graph G’.
VA

Chen N, L1Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.



LLM as predictor | GraphWiz

Graphinstruct-Statistics

Include Include Node Edge
Datasets Training Set?  CoTs? Tasks| Scale Scale
NLGGraph No No 8 9-35  10-30
GraphQA No No 12 5-20  1-100
Graphlnstruct Yes Yes 9 2-100 5-500
| Easy | Medium | Hard ‘

Tasks | cycle | connect | bipartite | topology | shortest | triangle ‘ tlow | hamilton | Subgraph ‘ Sum.

Total G-Q | 3717 2687 2013 902 1392 2756 405 2,097 1435 17,158

Train Total V | 84980 79,853 58860 10,146 23,204 14714 4333 33,284 7,847 315051

Total R | 13,122 10,001 9,324 4,481 5859 13,483 747 8454 6,274 72,785

Tesg  Total GO | 400 400 400 400 400 400 400 400 3,600

©s Total V 19,570 19,500 19,515 9,449 19,449 4,990 10,024 9.732 6,594 118,823

Chen N, L1Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.
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'LLM as predictor | GraphWiz

> Training
o Two-phases training.

Phase 1. Mixed-Task Instruction Tuning h Phase 2: DPO Alignment h
& Preferred Reasoning Path
Detect if a given graph G contains et : _ R :
any cycles. &0 7 o7 e ' :' ) .;I w ¢ @
............ N —> M. ft Maximum > o —_—
8- e A > v Likelihood e 54 M
Assess if two nodes u and vin ! “p» —> ' oo l R,
graph G are connected viaa path. &~
GraphWiz Dispreferred Reasoning Path GraphWiz
73

Chen N, L1Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.



'LLM as predictor | GraphWiz

~ Main Results of GraphWiz

Easy ‘ Medium | Hard |
Cat i Algorithm A
ategories gort ® ‘ cycle | connect | bipartite | topology ‘ shortest | triangle | flow | hamilton | subgraph | verage
GPT-4 (zero-shot)  38.75 17.00 65.25 5.00 9.25 5.75 3.25 39.25 45.50 27.67
Closed-Source GPT-3.5 (2-shot) 51.25 43.75 70.75 4.50 3.50 17.25 8.50 54.25 43.00 32.97
GPT-4 (2-shot) 52.50 62.75 74.25 25.25 18.25 31.00 7.75 75.95 46.75 43.81
GCN 84.00 74.00 82.00 = 9. 75 6.75 9.25 & 638.00 =
Graph Neural Networks GIN 87.50 73.00 85.25 = 729 7.30 12.00 & 66.50 =
GAT 87.50 79.25 85.25 2 7.25 7.50 12.50 g 66.25 -
Naive SFT 1323 83.50 78.50 1.00 23.00 47.00 28.75 31.75 41.25 46.56
Mistral-iB GraphWiz 92.00  89.50 72.00 19.00 31.25 3875 2925  26.50 85.50 53.75
GraphWiz-DPO 85.50 79.50 85.50 85.25 12.50 29.00 35.50 62.75 48.50 58.22
Naive SFT 73.75 83.50 41.25 4.00 9.50 30.00 16.50 69.00 75.45 44.81
LLaMz.2-1b GraphWiz 91.50 87.00 74.00 18.00 28.00 38.25 24.50 52.25 82.25 55.08
GraphWiz-DPO 89.00 82.50 84.75 46.75 24.00 92.75 43.50 81.50 77.25 65.00
Naive SFT 73.75 83.75 59.00 0.50 11.75 34.75 24.25 a9.75 54.75 44.69
LLabiA 2138 GraphWiz 94.75 87.00 78.00 28.00 27.75 36.00 24.50 59.00 81.50 57.39
GraphWiz-DPO 87.50 88.50 88.25 72.75 22.00 48.75 43.75 46.50 77.00 63.89

Chen N, L1Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.
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Different roles played by LLMs

Graph Initial Graph Initial C%j’ Graph Structure Text Attribut CSP Graph Structure Text Attribut
Struc?ure Ijjj]Features @ Text Attributes | Structure IjﬂFeatures @ Text Attributes | P @ X ¥ ributes : P ¢ @ ext Atirbutes
[ llh J’ \L J,:_Step J( JI = J/ ( ﬁ TRM 1 Teacher Model h i
GNN ] [ LLM J [ GNN ] [ LLM ] { ) [ ] [ LLM ]
m [ & ow ]<< v & o
Y’ ; ¥ v ! & trM !
Graph Text : 3 (/ L S v
Embeddings Embeddings D Supervise D [ h GNN ] _\I v i Student Model .
i 3 [ ] ext
g Contrastive/d i | | 'h TRM ) [ ‘h LLM ] m Embeddings
Pseudo-Labels Pseudo-Labels §

Concatenate

(a) Contrastive (b) Iterative (¢) Graph-Nested (d) Distillation

LLM as aligner

o Aligning the embedding spaces of GNNs and LLMs is an effective way
to integrate the graph modality with the text modality.

o Ensuring that each encoder’s unique functionalities are preserved
while coordinating their embedding spaces at a specific stage.
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'LLM as aligner | MoleculeSTM

> Molecules
o Each molecule is corresponded with a description.

PubChemSTM-raw PubChemSTM-extracted

SMILES: cleccceel
This molecule is a colorless liquid with a sweet odor. It evapo-

Benzene is a colorless liquid with a sweet odor. It evaporates
rates into the air very quickly and dissolves slightly in water.

into the air very quickly and dissolves slightly in water.

~ Pipeline — Contrastive Learning

(a) Contrastive Pretraining

)OLO 5 encode f; project p, project p, encode f;
—_ —_— — ] —
@)LO,H I:I:I:‘ ED:‘ 4 b[:D:'
~ b4
“ L4
\\ I'
g, S g
= Q
<I> < ,/ \\ 3 :
, - E—
Aspirin is a . ’ . . Penicillin G
B encode f; project p Contrast project p encode f; | Sodium is the
commonly used t t p h
drug for the —_— | —_— | | | | D —— 44— | sodium sa
treatment of forrq (.)f. benzyl-
pain and fever. penicillin.

Liu S, Nie W, Wang C, et al. Multi-modal Molecule Structure-text Model for Text-based Editing and Retrieval. NMI 2023.
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LLM as aligner | GLEM

Om‘ ut

O
O m ut

—/ Graph
Text Embedding Structure M-Step tar, et
i

/‘“\
Ole >| GNN training
Rl
Pseudo-label by LM Pseudo-label by GNN
E-Step

LM training je——

| | | L | Text Attribute

EM Framework

o E-step: LM optimization.

o M-step: GNN optimization.

o lterative generate pseudo-labels and update both LM and GNN.

77
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'Others: LLM as Labeller | LLM-GNN

» Pipeline

Step1: Active node selection
Step2: Annotation

Step3: Post—filtering

Step4: GNN training/inference

Confidence-
aware

Difficulty-aware )
ty annotations

active node
selection

Q
Q
Q
Q

> Reliable Annotation

CORA OGBN-PRODUCTS WIKICS
Prompt Strategy Acc (%) Cost Acc (%) Cost Acc (%) Cost
Vanilla (zero-shot) 68.33 +£6.55 | 75.33 £4.99 | 68.33 £ 1.89 1
Vanilla (one-shot) 78.67+450 1.8 7200+356 24

22
TopK (zero-shot) 68.00+638 1.1 74.00£5.10 1.2 [I200=E206" 1.1
Most Voting (zero-shot)  68.00 + 7.35 1.1  7533+499 1.1 69.00+2.16 1.1
Hybrid (zero-shot) 6733+6.80 1.5 73.67+525 14 71.00+283 14
2.9

Hybrid (one-shot) 70.33 + 6.24 WIS6TE6NZY 23 73.67+262 29
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Benchmarking GraphlLLLM

Techniques Used Learning Scenarios
Role Method Predictor GNN PLM/LLM Venue Code
Fine-tune Prompt Supervised Zero-shot
GIANT [9] GNN GraphSAGE, etc. BERT X X v X ICLR22 Link
TAPE [13] GNN RevGAT ChatGPT X v v X ICLR24 Link
Enhancer OFA [26] GNN R-GCN Sentence-BERT X v v v ICLR24 Link
ENGINE [54] GNN GraphSAGE LLaMA-2 4 v v X LICAI'24 Link
ZeroG [25] GNN SGC Sentence-BERT v v X v SIGKDD’24  Link
InstructGLM [50] LLM - FLAN-T5/LLaMA-v1 v v v X EACL'24 Link
GraphText [53] LLM - ChatGPT/GPT-4 v v v X Arxiv Link
Predictor ~ GraphAdapter [17] LLM GraphSAGE LLaMA-2 v v v X WWW'24 Link
GraphGPT [40] LLM GT Vicuna v v v v SIGIR 24 Link
LLaGA [6] LLM - Vicuna/LLaMA-2 v v v X ICML'24 Link
Aligner GLEM [52] GNN/LLM  GraphSAGE, etc. RoBERTa v X v X ICLR’23 Link
PATTON [21] LLM GT BERT/SciBERT 4 X v X ACL'23 Link

Motivation

o 1. The use of different datasets, data processing approaches, and data

splitting strategies in previous GraphLLM works.

o 2. The lack of benchmarks for zero-shot graph learning has led to limited

exploration in this area.

o 3. Each method’s computation and memory costs often overlooked.

L1Y, Wang P, Zhu X, et al. GLBench: A Comprehensive Benchmark for Graph with Large Language Models. Arxiv 2024.
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\ Benchmarking GraphLLM | GLBench

> Comparison with existing benchmarks

#Datasets #Models

Benchmark (Node-level) #Domains  Text (GraphLLM) Model Type Supervision Scenario

Sen et al. [38] 2(2) | X 8 (0) Classical Supervised

Shchur et al. [39] 8 (8) 2 X 8 (0) GNN Supervised

OGB [15] 14 (5) 3 X 20 (0) GNN Supervised

CS-TAG [47] 8 (6) 2 v 16 (2) GNN, PLM, Enhancer Supervised

GLBench 7(7) 3 v 18 (12) GNN, PLM, GraphLLLM  Supervised and Zero-shot

> Datasets

Dataset # Nodes # Edges Avg. # Deg Avg. # Tok # Classes # Train Node Text Domain
Cora 2,708 5,429 4.01 186.53 7 517% Paper content  Citation
Citeseer 3,186 4,277 2.68 213.16 6 3.77% Paper content  Citation
Pubmed 19,717 44,338 4.50 468.56 3 0.30% Paper content  Citation
Ogbn-arxiv 169,343 1,166,243 13.77 243.19 40 53.70% Paper content  Citation
WikiCS 11,701 216,123 36.94 642.04 10  4.96% Entity description Web link
Reddit 33,434 198,448 11.87 203.84 2 10.00% User’s post Social
Instagram 11,339 144,010 25.40 59.25 2 10.00% User’s profile Social

L1Y, Wang P, Zhu X, et al. GLBench: A Comprehensive Benchmark for Graph with Large Language Models. Arxiv 2024.



\ Benchmarking GraphLLM | GLBench

> Supervised
Scenario

g

g

a

L1Y, Wang P, Zhu X, et al. GLBench: A Comprehensive Benchmark for Graph with Large Language Models.

Effectiveness

LLM-as-
predictor

LLM-as-
enhancer

LLM-as-aligner
Scaling law

Model Cora Citeseer Pubmed Ogbn-arxiv WikiCS Reddit Instagram
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
GCN [23] 82.11 80.65 6984 6549 79.10 79.19 7224 51.22 8035 77.63 63.19 6249 6575 58.75
GAT [43] 80.31 79.00 68.78 6237 7693 76.75 71.85 5238 7973 7740 6197 61.78 6538 58.60
GraphSAGE [10] 79.88 7935 68.23 63.10 7679 7691 71.88 52.14 79.87 77.05 5851 5841 65.12 5585
Sent-BERT (22M) [36] 69.73 6759 68.39 6497 6593 6733 7282 5343 77.07 7511 5731 57.09 63.07 56.68
BERT (110M) [22] 69.71 6753 6777 6410 6369 6493 7229 5330 7855 7574 5841 5833 6375 57.30
RoBERTa (355M) [30] 69.68 6733 68.19 6490 7125 7219 7294 5270 78.67 76.16 57.17 57.10 63.57 56.87
GIANT [9] 81.04 80.13 65.82 6231 7689 76.05 72.04 50.81 8048 78.67 6467 6464 6601 56.11
TAPE [13] 8095 7979 66.06 61.84 7987 7930 7299 5143 8233 8049 60.73 60.50 6585 5049
OFA [26] 7524 7420 73.04 6898 7561 7560 7323 5738 7734 7497 6486 6495 6085 5544
ENGINE [54] 81.54 7982 72.15 67.65 7474 7521 75.01 5755 R81.19 79.08 6320 5934 67.62 5922
InstructGLM [50] 69.10 6574 51.87 5065 7126 71.81 39.09 2465 4573 4270 5578 5324 5794 5487
GraphText [53] 76.21 7451 5943 5643 7464 7511 4947 2476 6735 6455 61.86 6146 6264 54.00
GraphAdapter [17] 72.85 7066 6957 6621 72795 7319 7445 56.04 7085 6649 6121 61.13 6740 58.40
LLaGA [6] 7442 7250 5573 5483 5246 68.82 7278 5386 7388 7090 6719 67.18 6294 5462
GLEMann (52 82.11 80.00 71.16 67.62 8172 8148 7643 58.07 8240 8054 5960 5941 66.10 5492
GLEM; v [52] 7379 7200 68.78 6332 79.18 7925 74.03 58.01 80.23 7830 5797 5756 6500 35450
PATTON [21] 7050 6797 63.60 61.12 84.28 83.22 70.74 49.69 80.81 77.72 5943 5785 064.27 5748
. 81
Arxiv 2024.



Benchmarking GraphLLM | GLBench

Catesprs Model A S Cora Citeseer Pubmed WikiCS Instagram
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Graoh SSL DGI [44] v X 1750 1244 21.67 1353 4488 3872 9.03 6.13 63.64 50.13
e bl GraphMAE [14] v X 27.08 23.66 1524 1444 2203 1565 10.74 6.69 53.56 52.18
LLaMA3 (70B) [42] X 6799 68.05 5144 4998 77.00 64.18 73.64 72.62 3823 3641
LLMs GPT-3.5-turbo [35] X v 6567 6322 5058 4934 7599 6990 68.75 6656 49.39 49.67
- GPT-4o [1] X v 6862 6849 5355 5242 7796 71.79 71.52 70.06 42.02 40.96
DeepSeek-chat [3] X v 6562 6577 5035 4832 7923 7430 70.77 6991 40.58 39.27
Training-free  Emb w/ NA v vV 6359 5823 51.75 4951 7466 73.15 5230 48.40 4552 45.14
Enhancer OFA [26] v v 2311 2330 3245 28.67 46.60 3504 3427 3372 53.63 51.10
- ZEROG [25] v v/ 6252 5753 5892 5458 79.08 7794 6046 57.24 56.13 52.50
Predictor GraphGPT [40] v v/ 2490 798 1395 13.89 39.85 20.07 38.02 29.46 4394 43.49

Zero-shot Scenario

o LLMs

o Semantics/Structures?
o Even a simple baseline can outperform existing GraphLLM methods.

L1Y, Wang P, Zhu X, et al. GLBench: A Comprehensive Benchmark for Graph with Large Language Models. Arxiv 2024.
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\ Future Directions

>

>

>

>

Dealing with non-Text-Attributed—Graph.
Dealing with Data Leakage.

o Especially for citation networks.

Improving Transferability.
o Transfer across datasets/domains/tasks.

Improving Explainability.

o Generate user-friendly explanations for graph reasoning, classification, etc.
Improving Efficiency.

o Especially for LLM-as-predictor methods.

o PEFT.

Analysis and improvement of expressive ability.
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Time

10:00-10:15

10:15-10:50

10:50-11:30

11:30-12:00

12:00-12:45

12:45-13:00

Section
Part A: Opening & Introduction
Part B: Uni-modal Pretraining
Part C: Multi-modal Pretraining
Coffee Break

Part D: Pretraining with Prompting

Q&A

Presenter
Hong Cheng
Zhixun L1

Yuhan Li

Xiangguo Sun
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Part D Graph Pre-training with
Prompting

Xiangguo SUN

86



\ Graph Prompting

What and why graph prompt

A Basic workflow of graph prompt
Graph prompt in multi—-task settings
Graph prompt in cross—domain settings
Applications and open-source tools
Prompt with LLMs and graphs

v YV VvV ¥V V V

87



\ Graph AGI Still in the Early Stage
> Why hard?

o Cross-modalities, cross-domains, cross-tasks
0 Social disputes: counterfactual outcomes, energy cost, etc.

: Graph-level
' Molecule
J inhibit HIV?
s N\ | Paper (7w )\  (——mm-o-
Title: --- .Edge level
Abstract:--- Did Jobs
\Keywords: )| Text found Apple?

.\. Node-level
\Cffe , Is this account
Graph Society _  malicious?

(a) Cross-modalities (b) Cross-domains (c) Cross-tasks 88



Fine—tune v.s. Prompt

Fine_tu ne &Tuned Frozen Prompt

o g oo oo o " oo o (o, [ (- M CEED N N M SES. SN, S N N M SEE M S D NS GEE SN GEN MR S N N N S W S

o Need to tune the large pre-trained

(efficient)

o Has the capability of reformulating
data

o More general cross tasks

i __ Downstream Y Pretraining r Downstream :

model (inefficient) | Fine- tuangas"S T Tzks prompt | |

o Do not change data :: ¢ e
.. L | Pretrained Pretraining | | Pretrained I

o Limited task generalization Graph Model Graph Model || Graph Model !
| Fey :i o :

Prompt : g% : . [ |
o Frozen the large pre-trained model | % 1 03%9 1 <
| 1 t g}‘ﬁ :

Task Domain :: Pretraining Domain:: Task Domain
Figure 1: Fine-tuning, Pre-training, and Prompting.
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Artificial General Intelligence (AGI)

+ Large Language Models
* Training Tricks
« Computing Capability
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\ Prompt: Promising for Graph AGI

> A promising approach to reformulate data.
a2 Which is helpful for cross-domains demand.

~ Widely used in other modalities (NLP and CV)

2 Which is promising for cross-modalities.
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\ Prompt: Promising for Graph AGI

~ Reformulate downstream tasks to the pre—
training task.

a2 Which is promising for cross-tasks.

> No need to change the large foundation model
again.
o Which is more efficient than fine-tuning

How to develop a prompting framework to graphs
like language model?
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\ Motivation

» Similar insights between LLM and GNN pre-training

KDD2024 will witness many high-quality papers

KDD2024 will <Mask> many high-quality <Mask>.

LLM Maximize

Agreement

ﬁ v

A0

dropping

<\\
N
AN
\
\ 1 ] L[]
\\ Maximize

| Agreement

/
Node/edge/sub—grap% //

Pre-training in LLM:
Masked word
prediction

Pre-training in graph
models: contrastive
learning.

Aligning two graph views is very similar to predicting some vacant “masks”
on graphs. 93



\ Challenge 1

> Designing the graph prompt is more intractable than
language prompts

o NLP prompts are usually some preset tokens, whereas the graph
prompt needs to know how to organize these tokens and how to insert
the prompt into the original graph.

| KDD2023 will witness many high-quality | | [ input ? Prompf_@l@ (;jj’i"r)
! papers. | feel so [MASK] | & 7 EE:)I

A Ia ng u ag e p rom pt mserting pattem <_—_;> prompt token: @ token structure:
e me??‘t the prompt to the mput graph

language prompt graph prompt
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\ Challenge 2

> Reconciling downstream problems to the pre-training task

is more difficult in graph domains
o Graph tasks with node level, edge level, and graph level are far diversified.

Pre—training Task Downstream
O\View 1 |
Y View 1

GNN to be BN I

% - = pre-trained i
é View 2

View 2

How to reformulate
- node operations to
the edge
perturbation?
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Challenge 3

Learning reliable prompts is more difficult in the multi-
task setting

o Hand-crafted prompts are usually task-bounded, which is far from
sufficient for multiple tasks.

Link Prediction

555

Initial Prompt 96

Graph Classification o
Node Classification




'Revisit Language Prompt
> Soft—-Prompt and Hand-crafted Prompt

o Hand-crafted prompts are manually designed phrases.
o Soft-prompts are learnable word latent vectors

~ Make graph prompt learnable (soft—prompt for graphs)
o Hand-crafted: not clear what should they look like.
o Soft-prompts: learnable on graph and are more easily to achieve.

| KDD2023 will witness many high-quality | | KDD2023 will witness many high-quality |
i papers. | feel so [MASK] i ' papers [ [ [ [ [MASK] i

A language prompt A language prompt

Hand-crafted prompt soft prompt

Xiangguo Sun, Hong Cheng, Jia L1, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD 2023
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Unified Soft—-Prompt for Graphs

Prompt Token
~ Prompt Token inserting P

o Vectorized information with the

_ Token
same size as node features. Structure
- Token Structure
| | Prompt
o Inner connections among different Graph ]| Graph

tokens.

>~ Inserting Pattern

o Cross links between prompt tokens
and the original graph.

Combined Graph
(sent to the pre-trained
GNN for downstream

98
Xiangguo Sun, Hong Cheng, Jia L1, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neuriﬂ@lﬁ@)ks. SIGKDD 2023



\ Reformulating Downstream Tasks

> Node-level to edge-level

4 Input graph N P s T: i Linking
re-trainin arget node pair 'J
probability | £} Target node

(6 +3[) d = 2

Qo) B Pretext loss B

Parameters!transfer )N

NE

p=

Token pairs

1e2U0)
uoIpald

Structure token

S—(
\. .'@3

M3:

____ lask token matrices sl

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, Xin Wang. GPPT: Graph Pre-training and Prompt Tuning to Generalize
Graph Neural Networks. In KDD'2022 00



\ Reformulating Downstream Tasks

> Reformulating downstream tasks to link-level tasks

< = e =
“Contextual ™« == > .-” Contextual ~~.
subgraph of node v, \\\ (a) Pre-tralnlng Wlth ;'/ subgraph of node v, \\‘
o0 link prediction
g
§~< _____________
-? Sim?
0]
=
A
L T e
(" Learnable node Learnable graph
classification ﬁ T classification
prompt prompt
ReAaDOUT READOUT

Prorriptlng

O

O

\
\

—;—}5—'5@ S

\
\
1o yd

: Sl
____________________

Node class prototypes Go Graph class prototyp es

________________

(b) Node classification (c) Graph classification

~

Zemin Liu, Xingtong Yu, Yuan Fang, Xinming Zhang. GraphPrompt: Unifying Pre-Training and Downstream Tasks for
Graph Neural Networks. In WWW'2023 100



Reformulating Downstream Tasks

Reformulating downstream tasks to graph-level tasks
o Node/edge-level operations can be treated as some
special cases at the graph-level operations.

e.g, “deleting a subgraph” is the higher-level operation
of “deleting nodes and edges”.

Graph-level
Operations
Node ?‘Ia%lénq a subaraph”
Operations 'Edge-level
“changing Operations
node “adding/deleti
features”, ng an edge”
“deleting/addi etc.
ng a node”,

etc.

101
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\ Reformulating Downstream Tasks

> Reformulating downstream tasks by induced graphs

o Node tasks to graph tasks.

o Edge tasks to graph tasks.
Reformulating node

classification to graph
clas Iflcatlon

Reformulating link prediction to
graph classification

~ < Graph label is positive
: ,‘j/ Cif the node pair has an
- edge and vice versa.

’/\\

Finding a k-hop ego- Assigning the node Extending a node pair Assigning the graph label
net for the target label to the graph to their k-hop according to node pair
node label neighbours connection

°
o
O

102
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Multi-task Prompting via Meta Learning

Gradient propagate — — » Tuned ® Frozen':
o S e S D S T S T S T e T ST e T [ Meta Training ]
| Prompt Tuning/Adapt Loss |
|
| Meta- t P 1 '
. . : : frﬁmp ¥ Support 1 :
Phase 1: Meta Training L e set [T |
S T I
on Source Tasks R S d . graph i i
: " » i - embedding I :
! \ . |
' Meta Meta Loss Adapt ~ Pre-trained —, O _, Downstream |
' update \ Model (fixed) [ ] Task :
1 I]II] | :
; Query | !
: Set . ;
|
i Meta Loss | ;
| L oo oo oo oo o oo oo o o e e e e e e mm mm mm e e mm mm omm e ol 1
| :
o "'""""":'_':'_':'_':'_':'_':'_':'_':'_':'_" """" [ Meta Testing ]
l Adapt Loss
—— ﬁ Support Set
: Pre-trained
" Model (fixed) DOWDstream

Task

- Query Set
Pre-trained

Model (fixed) Downstream Task
Task Results

Xiangguo Sun, Hong Cheng, Jia L1, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD 2023
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Multi-task Promptina via Meta Learnina

Gradient propagate — — » Tuned & Frozen®?

B e S S T e S T e e T ST T T [ Meta Training ]
| Prompt Tuning/Adapt Loss |
|
1 Meta-prompt e SRS A SRS memes SR e 1 ;
! oraph ¥ Suéjport I E
' | ‘D) |
| T
. graph l I
: — embedding I !
| 1 |
|
| Pre-trained ] Downstream |
—_—l] — |
i Model (fixed) O Task !
: O o
! Query ;
: Set . ;
|
: Meta Loss | ;
: ———————————————————————— - 1
1 |

|
|
|
Model (fixed) D°Wnstream i
Task i
|
|
|
|

Phase 2: Meta Testing on the

Adapt Loss
ﬁ Support Set
| Pre-trained

Target Task
- Query Set
. _‘0,9 Pre-trained
' Model (fixed) Downstream Task
Task Results |

e | Meta Testing |

Xiangguo Sun, Hong Cheng, Jia L1, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD 2023
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‘Multi-task Prompting via Meta Learning
> An Example:

o Target task: link prediction.

0 Source tasks: Node binary classification tasks.
= Each task corresponds to one node class.

o All inputs are induced graphs. Link prediction
task
Task1: S @A w +W
d or not? [ 3
e ' Graph
Task2: T%A
purple or not? + ‘ = Pre-trained
GNN
Task3: m
bl t?
e orno Learn reliable 5 Usethe prompt for _

prompts on source target tasks 105
tasks



‘Multi-task Prompting via Meta Learning

Node Class 1
___________ Support Query o
set set

[
Phase 1: Meta Training |

Inner adaptin
Initial / r=-====-=-=

Prompt 1

Node Class 2
Support Query

set set

Adapt prompt
initialization

ner
Prompt 2
o adapti P
3 Prompt 3
Node Class 3
Support Query

set set

l
|
|
Outel: adaptin¢
|
l
|
l
|
|
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‘Multi-task Prompting via Meta Learning

Phase 2: Meta Testing

Adapt prompt
Prompt 4 initialization

Evaluating on: H
|

Query set nner adapting
A

'
Prediction

Support set

Prediction




Why It Works?

» The nature of prompting is to manipulate the input
data to match the pretext.

» The flexibility of data operations is the bottleneck of
prompting performance.

i Fang et al. [1] proved that we can always learn an
! appropriate prompt token pk making the following equation
stand:

This means we can

learn an appropriate

token applied to the
original graph to imitate
any graph manipulation.

¢ (A, X+p*) =9 (g(A X)) + Op
* *: pre-trained model
 p*:aprompt token
« A, X: adjacent matrix and feature matrix
* ¢g(.): graph manipulation (e.g. “changing node features”,
“adding or removing edges/subgraphs” etc)

[1] Taoran Fang, et al. Prompt Tuning for Graph Neural Networks. arXiv preprint arXiv:2209.15240 (2022).108



Why It Works?

The error bound 0, is related to: (1) some non-linear layers of

the model (unchangeable), and (2) the quality of the learned
prompt (changeable), which is promising to be further
narrowed down by a more advanced prompt scheme.

We extend the standalone token p* to a
P (A X+p) =9 (g(A X)) + 0p

‘ I prompt graph G, that has multiple prompt
! < tokens with learnable inner structures and
¢ (w(9.9,)) =9 (g(A X))+ 05,  more advanced inserting pattern p to the

original graph G

We can empirically demonstrate: 0,,< 0,

That means our method supports more flexible transformations
on graphs to match various pre-training strategies.
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\ Experiments

> Multi-Task Performance with Few-shot Learning

Settin' Table 2: Node-level performance (%) with 100-shot setting. IMP (%): the average improvement of prompt over the rest.

Node
classification

Training Methods Cora CiteSeer Reddit Amazon Pubmed
schemes Acc F1  AUC | Acc F1 AUC | Acc F1 AUC | Acc F1 AUC | Acc F1 AUC
GAT 74.4573.21 82.97 | 83.00 83.20 89.33 | 55.64 62.03 65.38 | 79.00 73.42 97.81 | 75.00 77.56 79.72
supervised GCN 77.5577.45 83.71 | 88.00 81.79 94.79 | 54.38 52.47 56.82 | 95.36 93.99 96.23 | 53.64 66.67 69.89
GT 74.2575.21 82.04 | 86.33 85.62 90.13 | 61.50 61.38 65.56 | 85.50 86.01 93.01 | 51.50 67.34 71.91
GraphCL+GAT 76.0576.78 81.96 | 87.64 88.40 89.93 | 57.37 66.42 67.43 | 78.67 72.26 95.65 | 76.03 77.05 80.02
pre-train GraphCL+GCN 78.7579.13 84.90 | 87.49 89.36 90.25 | 55.00 65.52 74.65 | 96.00 95.92 98.33 | 69.37 70.00 74.74
. GraphCL+GT 73.8074.12 82.77 | 88.50 88.92 91.25 | 63.50 66.06 68.04 | 94.39 93.62 96.97 | 75.00 78.45 75.05
fine-tune SimGRACE+GAT 76.8577.48 8337 | 90.50 91.00 91.56 | 56.59 65.47 67.77 | 84.50 84.73 89.69 | 72.50 68.21 81.97
SimGRACE+GCN 77.2076.39 83.13 | 83.50 84.21 93.22 | 58.00 55.81 56.93 | 95.00 94.50 98.03 | 77.50 75.71 87.53
SimGRACE+GT 77.40 78.11 82.95 | 87.50 87.05 91.85 | 66.00 69.95 70.03 | 79.00 73.42 97.58 | 70.50 73.30 74.22
GraphCL+GAT 76.50 77.26 82.99 | 88.00 90.52 91.82 | 57.84 67.02 75.33 | 80.01 75.62 97.96 | 77.50 78.26 83.02
GraphCL+GCN 79.2079.62 85.29 | 88.50 91.59 91.43 | 56.00 68.57 78.82 | 96.50 96.37 98.70 | 72.50 72.64 79.57
prompt GraphCL+GT 75.0076.00 83.36 | 91.00 91.00 93.29 | 65.50 66.08 68.86 | 95.50 95.43 97.56 | 76.50 79.11 76.00
SimGRACE+GAT 76.9578.51 83.55 | 93.00 93.14 92.44 | 57.63 66.64 69.43 | 95.50 95.43 97.56 | 73.00 74.04 81.89
SimGRACE+GCN 77.8576.57 83.79 | 90.00 89.47 94.87 | 59.50 55.97 59.46 | 95.00 95.24 98.42 | 78.00 78.22 87.66
SimGRACE+GT 78.7579.53 85.03 | 91.00 91.26 95.62 | 69.50 71.43 70.75 | 86.00 83.72 98.24 | 73.00 73.79 76.64
IMP (%) | 147 1.94 110 | 381 525 205 |3.97 504 698 | 449 584 224 | 881 455 462

_Reported Acc of GPPT (Label Ratio 50%)

77.16 — =

appr. Label Ratio of our 100-shot setting

~ 25%

65.81

~ 18%

92.13 - =
~ 1.7%

86.80 - =
~7.3%

72.23 - =

~ 1139,




\ Experiments

> Multi-Task Performance with Few-shot Learning

(]
Settl nQSTﬂble 12: Edge-level performance (%) with 100-shot setting, IMP (%): the average improvement of prompt over the rest.

Edge

classification

Training it Cora CiteSeer Reddit Amazon Pubmed
schemes Ace F1 AUC | Acc F1 AUC | Acce F1 AUC | Ace F1  AUC | Ace F1  AUC
GAT 84,30 83,35 85.43 | 68.63 82.79 8998 | 93,50 93.03 94,48 | 85.00 82.67 B&T8 | 80.05 77.07 79.26
supervised GCN 83.85 84.90 B5.90 | 66.67 81.01 89.62 | 83.50 84.51 91.43 | B9.00 89.81 98.85 | 79.00 77.73 80.19
GT 85.95 86.01 87.25 | 69.70 83.03 82.46 | 95.50 94.52 96.89 | 94.00 93.62 99.34 | 74.50 65.77 85.19
GraphCL+GAT 85.64 8597 87.22 | 72.67 82.85 92.98 | 94.00 93.75 98.43 | 86.50 86.96 B4.47 | 85.54 83.92 91.78
pre-train Gr&phCL+GCH 86.36 85.82 86.39 | 70.67 81.82 90.00 | 94.00 93.94 97.04 | B6.50 84.92 98.41 | 80.00 78.05 85.21
GraphCL+GT 85.79 86.27 87.51 | 86.01 8538 BB.58 | 96.67 9538 97.65 | 96.50 97.42 98.12 | 85.50 87.11 B1.68
B e Elre 5?mGRﬂCE+GﬂT 86.85 86.80 88.12 | 8§5.33 8526 90.04 | 95.50 95.54 97.11 | 87.50 86.34 88.65 | 80.01 81.03 B86.89
SIMGRACE+GCN | 85.62 8538 87.83 | 8933 86.34 95.10 | BR.O0 B7.88 9449 | 98.45 97.57 9829 | 80.50 B2.58 91.22
SimGRACE+GT | 86,35 87.03 88.47 | B6.00 B9.52 90.42 | 97.50 95,54 96,92 | 96.50 96.45 99.09 | 81.00 79.57 85.69
GraphCL+GAT 86,85 B6.88 87.92 | 76.67 B3.00 96.22 | 95.36 94.50 98.65 | BB.50 86.00 87.15 | 86.50 84.75 92.61
GraphCL+GCN 86,87 86.80 B7.79 | 76.67 B2.37 93.54 | 9550 95,52 97.75 | B6.96 85.63 98.66 | 81.50 78.61 86.11
prompt GraphCL+GT 87.02 86.90 B7.97 | 86.67 BB.00 91.10 | 97.03 95.94 98.62 | 98.50 98.48 9853 | B6.50 87.78 82.21
SImMGRACE+GAT | 87.37 87.33 B8.37 | 91.33 9230 95.18 | 95.72 96.69 97.64 | 95.50 95.3%8 98.89 | 80.50 82.03 &7.86
SIMGRACE+GCN | 86,85 86,80 BB.67 | 93.47 97.69 97.08 | BR.00 88,12 9510 | 98,50 98.52 98,55 | 81.00 83.76 9141
SimGRACE+GT | 87.30 87.24 88.74 | 95.33 9652 94.46 | 98.00 98.02 99,38 | 98.50 98.52 99,10 | 82.50 80.45 87.61

IMP(%)

1.65 148 1.28

12.26

6.84

5.21

194 229 188

363 344 2.03

298 4.6411 3.21




\ Experiments

> Multi-Task Performance with Few-shot Learning

(]
Settl ngs Table 13: Graph-level performance (%) with 100-shot setting. IMP (%): the average improvement of prompt over the rest,

Training Methods Cora CiteSeer Reddit Amazon Pubmed
schemes Acc F1 AUC [ Ace F1 AUC | Acc F1 AUC | Acc F1  AUC | Ace F1 AUC
GAT 84.40 86.44 87.60 | 86,50 84.75 91.75 | 79.50 79.76 82.11 | 93.05 94.04 93,95 | 69.86 72.30 66,92
supervised GCN 83.95 86.01 88.64 | 8500 82.56 93.33 | 64.00 70.00 78.60 | 91.20 91.27 9433 | 61.30 59.97 66.29
Graph GT 85.85 85.90 89.59 | 77.50 75.85 89.72 | 69.62 68.01 66,32 | 90.33 91.39 94,39 | 60.30 60.88 67.62
classification GraphCL+GAT | 85.50 85.54 89.31 | 83.00 8547 92,13 | 72.03 72.82 83.23 | 92,15 92.18 94,78 | 85.50 85.50 86.33
SR GraphCL+GCN | 85.50 85.59 87.94 | 86.50 84.57 94.56 | 71.00 71.90 80.33 | 93.58 93.55 94,93 | 78.75 77.29 89.40
.\ GraphCL+GT | 85.95 85.05 87.92 | 84.50 81.87 88.36 | 69.63 70.06 81,35 | 91.68 91.55 94.78 | 86.85 86.93 B8.91
fine-tune  SIMGRACE+GAT | 86.04 86.33 88.55 | 83.50 85.84 90.09 | 81.32 81.64 88.61 | 93.58 9357 93.91 | 87.33 86.70 88.02
SimGRACE+GCN | 85.95 86.05 89.33 | 84,50 86.46 91.60 | 80.50 81,52 89.11 | 90.73 90.52 94.85 | 85.26 84.64 86.99
SimGRACE+GT | 86,40 86.47 89.64 | 81.00 81.54 89.81 | 69.50 70.97 77.11 | 92,63 92.56 94.04 | 85.95 86.05 89.37
GraphCL+GAT | 86,40 86,47 89.46 | 86,50 89,93 92,24 | 73.36 73,32 84.77 | 94,08 94.02 94,20 | 8595 85.97 87,17
GraphCL+GCN | 85.95 86.01 88.95 | 87.00 8587 95.35 | 72.50 72.91 81,37 | 94.05 94.05 94,98 | 84.60 84.43 B8.96
prompt (GraphCL+GT | 86,05 85.17 88.93 | 8550 85.28 88.60 | 72.63 70.97 8239 | 92,63 92.64 94.82 | 87.03 86.96 89.10
SimGRACE+GAT | 86.67 86.36 89.51 | 87.50 88.37 91.47 | 82,62 83.33 89.41 | 93.35 94.66 94.61 | 87.75 87.69 B8.88
SimGRACE+GCN | 86.85 86.90 89.95 | 85,00 85.85 91.95 | 81.00 82.24 89.43 | 93,95 92.06 93.89 | 85.50 85.54 87.30
SimGRACE+GT | 86.85 86.87 89.75 | 87.50 86.63 90.85 | 76.50 80.82 86.84 | 94,05 94.06 94,96 | 86.40 86.50 89.74
IMP(%) | 1.12 043 079 | 352 454 053 | 469 431 613 | 1.72 139 0.14 | 10.66 1077 9.16




\ From Multi-task to Multi-domain

> Domain transfer on graphs via prompt

Improvement (%)

_30 =

From Pubmed

Wisconsin Texas Cornell Chamele

Cora 5
2 (1433) 6 Contrastive 6,[1_::6 d Downstream
Figure 1: Negative transfer phenomenon in tl Loss GNN s
cross-domain transfer setting. Sources (Pubn GNN oR
are two homophilic datasets. Targets (Wiscor T ® pro
nell, Chameleon, and Squirrel) are five heter Loss tminad Graph
ame Prompt
GNN
Transferring
Nodes Coordinators @ Projection & Tuned @ Frozen

Figure 2: Overview of our proposed GCOPE method. The left part is our pretraining stage and the right part transferring stage

Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, Jia Li. All in One and One for All: A Simple yet Effective Method towards Grpss-
domain Graph Pretraining. SIGKDD 2024.



'Cross—domain Graph Pre-training

» Cross—domain ability is one of the key
innovations in AGI (e.g., NLP and CV)

a2 Which pre-trains one foundation model using various
contexts, absorbing cross-domain knowledge (‘All in One’).

o Then, generalizes learned knowledge to a wide spectrum
of downstream domains (‘One for All’).

> Hard to replicate the success in the graph field
remains.

a2 Which faces the negative transfer phenomenon.

14



\ Negative Transfer Phenomenon

> Homophilic Domain
o Source domain.
o Pre-train on Pubmed or Photos.

> Heterophilic Domain
o Target domain.

Improvement (%)

. . From Pubmed
a Transfer to Wisconsin, Texas, From Photos
Corne”, Chameleon, or SqU”Tel Wisconsin Te;(as Corlnell Charr;eleon Squlirrel
> Negative TranSfer Negative transfer phenomenon in the single-source

cross-domain transfer setting which is the traditional
way to achieve transferring.

o Hard to transfer across various
domains via traditional pre-
training approaches.

15



\ Motivation

> Follow the pre-training paradigm in LLM
“All in One” “One for All”

% Citation l
?—— \( [ﬁ ,
Social Media \ /

Pre- train Transfer

P o [ Molecutar ;it
/ \ . ssj

Introducing the ‘All in One and One for All’ paradigm into the graph field like

Il I NA

Medicine




\ Challenge 1

> ldentifying and leveraging commonalities across
domains is more intractable than LLMs during the pre-
training phase

o The cross-domain training samples in NLP are all in text format,
whereas the samples in graph fields are in diverse structural patterns,
which is particularly observed between homophilic graphs (a pair of
nodes are intended to be similar if they are connected) and heterophilic

iHgﬁﬁﬁﬁ;@ﬁﬁ_@;@ﬁk_@@ﬁf?—gﬂﬁﬁ?ﬁﬁsﬁ fﬁ"é:a Eﬁ_@@:é;""'"“““'“"--

i The Eiffel Tower is a famous landmark in Paris, France. i /}g
\

m\ﬂ

-

! The patient presents with symptoms consistent with a |
| mild upper respiratory infection. i

Text samples Graph samples



\ Challenge 2

~ Aligning semantic spaces (features) across graph datasets
is more complex inherently in graph domains.

o Unlike the pure textual descriptions in NLP, in graph domains, many
graphs are not text-attributed or with specific feature semantics. They
have only latent feature vectors and we actually do not know how exactly
each dimension means. Additionally, the dimensions are far diversified.

Unified feature spaces Diverse feature spaces



\ Our Solutions

~ We introduce the concept of “coordinators”, which
are some virtual nodes that function as dynamic
bridges between disparate graph datasets,
prompting the integration across domains.

We design a complete cross—domain pre—training
framework and provide two transferring components,
which can ensure that the knowledge transferred is
not just relevant but also contextually enriched.

~ We carefully analyze why our method works and
confirm the effectiveness of our method via
extensive experiments. 1o

Y



\ Coordinators

» Feature Projection

o Various features are aligned by
a projecting module, such as
1433 -> 100, 745 -> 100, and
1703 -> 100.

> Graph Coordinators

o Cross Connection between
Coordinators and Datasets

o Inner Connection within
Coordinators

120



Unified Cross—domain Graph Pre-training

6t P?e' q Downstream
raine Task

GNN

6 Contrastive

Loss

OR
&) Pre- & Graph

trained
GNN

Reconstruction
Loss

Prompt

Transferring

Nodes Coordinators @ Projection & Tuned &) Frozen

Based on carefully designed graph coordinators, we propose a complete cross-
domain graph pre-training approach called Graph COordinators for PrEtraining
(GCOPE), that harnesses the underlying commonalities across diverse graph
datasets to enhance few-shot learning. Our novel methodology involves a
unification framework that amalgamates disparate graph datasets during the
pretraining phase to distill and transfer meaningful knowledge to target tasks.

121



\ Experiments

> Cross—domain Performance with Few-shot Learning

N _ ada® _

— =
’ Training N Cora Citeseer Pubmed Computers Photos
‘N m . ethods
n exa p I e . schemes Acc AUC Bl Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1
GCN 0.3012:06  0.6444:01 0.2591+04 | 0.4358+00 0.7234:07 0.3583+10 | 0.4210+01 0.6040:06 0.3026:.04 | 0.2602+07 0.6773:02 0.2428+.04 | 0.4603+04 0.8458+.01 0.4592+.04
ised GAT 0.3646+.014  0.6769:03 0.3108+04 | 0.3695:05 0.7232:06 0.3305:04 | 0.4209+04 0.5710:06 0.3227:.07 | 0.3482:07 0.6878+05 0.2397+05 | 0.4742+08 0.8213:+02 0.4498+.07
supervise
P ret ra i n o n n g BWGNN 0.2543:05  0.5563:.03  0.1971:02 | 0.3599:07 0.6954:05 0.3112:06 | 0.3976+03 0.4934:03 0.2686+.04 | 0.2768+.05 0.6273+03 0.1864:+.03 | 0.4113+00 0.7769:00 0.3883:.01
- FAGCN 0.3819:03  0.6818+014  0.3009:.09 | 0.5219:08 0.8042:03 0.4667+08 | 0.4522:+02 0.5622:04 0.4275:07 | 0.4651+04 0.7762+02 0.3009:07 | 0.5937+05 0.8847:00 0.5346:.03
- CO ra P GCL+GCN 0.2507+.06  0.6350+.03 0.2240+03 | 0.3140+02 0.6661+04 0.2397:02 | 0.4217+02 0.5257+05 0.2896+.07 | 0.2856+.04 0.6467:+03 0.1653+.06 | 0.5533+01 0.8661:+01 0.5217+.01
GCL+FAGCN | 0.3892:05 0.7228:03 0.3619+05 | 0.4461:02 0.7781:01 0.4126+02 | 0.4532+02 0.5708:03 0.4168:04 | 0.4371:06 0.7616+x01 0.3450:.02 | 0.6273+01 0.871001  0.5406+.03
= +
- C Itese e r A Sim+GCN 0.2492:02  0.5765:03  0.1567+04 | 0.2950+06 0.6203:06 0.1812:06 | 0.3980+01 0.5067+02 0.2805:.01 | 0.2666+10 0.6286+01 0.1603+.03 | 0.4290+04 0.7645:+02 0.3955+.02
netunin,
& Sim+FAGCN | 0.3957:03 0.7284:02 0.3585:01 | 0.5101+03 0.7969:01 0.4615:04 | 0.4398:01 0.5535:01 0.4225:02 | 0.4393:01 0.7718:02 0.3100:.02 | 0.5704+02 0.8543:02 0.4984:01
= P u b l I le d GCOPE GCL+GCN 0.3368+.02  0.6971:01 0.2967+.03 | 0.3701+03 0.7066:02 0.3265:.05 | 0.4443+04 0.5888+04 0.4242:04 | 0.3439:03 0.7023+01 0.2976+.03 | 0.5635+.02 0.8733:+00 0.5480+.02
GCL+FAGCN | 0.4618:03 0.7597+05 0.4388+.05 | 0.5631:03 0.8258:02 0.4953:04 | 0.4591+01 0.5512:01 0.4203:.03 | 0.4465:01 0.7747+00 0.3432:03 | 0.6329+02 0.8850+00 0.5935+.03
+
- COI I I p u te rS finetuni Sim+GCN 0.2525+05  0.5744:03 0.1722+06 | 0.3475:05 0.6527+05 0.2704:05 | 0.4116+00 0.5166+04 0.2994:03 | 0.3230+01 0.6994:00 0.2515:00 | 0.4772+03 0.7851+01 0.4277+.02
etunin
P h t & Sim+FAGCN | 0.3875:04 0.7163:03 0.3355+08 | 0.5704+04 0.8425:01 0.5178+04 | 0.4727+03 0.5587+03 0.5672+03 | 0.4677+04 0.7875+01 0.3823+02 | 0.5985+02 0.8757+02 0.5556+.05
0 O IMP (%) 11.23% 5.23% 14.63% 13.81% 4.26% 16.59% 5.02% 0.99% 25.32% 13.79% 6.28% 30.70% 10.31% 2.30% 12.18%
.. g . . .
C O rn e I I Training RIS Wisconsin Texas Cornell Chameleon Squirrel
schemes Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1
= C h a m e I eo n GCN 0.6290:+05  0.8320:04  0.4871+14 | 0.5812+08 0.6731:04 0.4557+10 | 0.3263+04 0.5666+01 0.3151+03 | 0.2393+03 0.5310:04 0.1923:03 | 0.2093:00 0.5263:01 0.1889+.01
isad GAT 0.6009:+02  0.8346:01  0.5217+05 | 0.6300+08 0.5854:08 0.4282:+.13 | 0.3275+14 0.5306:03 0.1497+04 | 0.2342+02 0.5205:04 0.1379:03 | 0.2118+00 0.5195:02 0.1160+.01
. supervise
- S q u I rre I H BWGNN 0.5620:+05  0.8463:02  0.5189:05 | 0.7438+10 0.6642:07 0.6274+22 | 0.3150+09 0.5938:06 0.2190+05 | 0.2206+02 0.5039:03 0.1540:.03 | 0.2155+00 0.5149:00 0.1664+.02
FAGCN 0.5222:+05  0.7905:0310 0.4725:06 | 0.6900+06 0.7185:01 0.5334+.12 | 0.2938+06 0.6573:04 0.2872+05 | 0.2575+02 0.5515:02 0.1941:01 | 0.2181+00 0.5202:00 0.1875+.02
P GCL+GCN 0.5249:03  0.7876+03  0.4415:05 | 0.7350:01 0.7210:02 0.5636+09 | 0.4175:04 0.6350+02 0.3500:.04 | 0.2249:02 0.5213:00 0.1432:03 | 0.2118+t01  0.5059+01 0.1110+.03

GCL+FAGCN | 0.6063:01 08356101  0.5555:07 | 07425803 0.7034s05 0.6141:00 | 0.2588504 0.6262501 0.2442:01 | 02443200 0.5530:01 0.1875s01 | 0.2223:00 05307200 0.1740s.02
i
T ra nSfe r to . Sim+GCN | 0.5258s04  0.7927:05  0.4604+06 | 0.6338s05 0.6024:07 0.4269:14 | 03438513 05954109 0.216809 | 0.2271s01  0.5183s02  0.1578+03 | 0.2133200 0.5133201  0.1550502

finetuning
. . & Sim+FAGCN | 0.6335:02  0.8557:00  0.5830:.04 | 0.6725+14 0.6922:014 0.5906+.10 | 0.2725:05 0.6433:04  0.2617+.04 | 0.2748:01  0.5652:00 0.2011:00 | 0.2170+00 0.5213+00 0.1716+.01
= WI SCO n S I n GCOPE GCL+GCN 0.6606+01  0.8487+01  0.5952:04 | 0.7738+06 0.7387+01 0.6763+08 | 0.3975+.10 0.6694+04 0.3120:+.04 | 0.2411x01 0.5564+00 0.2210+00 | 0.2245:00 0.5207+01  0.1741+.00
GCL+FAGCN | 0.6579+03  0.8531+01  0.5649:00 | 0.7125:02  0.6693+02  0.6300+.03 | 0.4013+05 0.6897+01 0.3160+02 | 0.2886+00 0.5898:00 0.2320+00 | 0.2257+00 0.5257+00 0.1885:+.01
B

finetuni Sim+GCN 0.5412+03  0.8059:02  0.4509:06 | 0.6137+18  0.6900+03 0.4674+10 | 0.3675+09 0.6045:04 0.2339:04 | 0.2573:02 0.5467+01 0.1852:01 | 0.2180+00 0.5147+00 0.1783+.00
— netunin .
I M P (%) — & Sim+FAGCN | 0.7321+00 __0.9305:00 __0.6873+01 | 0.7950+03 _0.7451+01 _0.7042+03 | 0.5925+01 _0.8069:03 _0.4626+03 | 0.2804+01 _0.5662+02 _0.2192:+00 | 0.2193+00 _0.5370+00 _0.1984+01

Improvement Percentage

4.58% 13.76% 6.65% 6.08% 16.87% 37.66% 6.01% 25.36% 3.25% 1.06% 16 S‘J%

IMP (%) 12,5




Research Survey for Further Study

Graph Prompting Research

o Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong,
Jia Li. Graph Prompt Learning: A Comprehensive Survey and
Beyond. https://arxiv.org/abs/2311.16534

Graph Meets Large Language Model

o A Survey of Graph Meets Large Language Model: Progress and
Future Directions. Survey paper at IJCAI2024.
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'More applications of graph prompt

> Graph prompt for Protein Multimer Structure

7

.

= Determined Assembly ..... Assembly to be determined o . F B
38
L~
> \ —.’ﬁﬁ&uiﬁ
o
Lo
A _‘ " -y ‘UT”*
A _‘ s\rr J'.:;_ %043.. ] i
PPI=09 Overlapping TIPPI 55 C-PPI =0.7
interface Condition 4

Figure 1: (A). Step-wise assembly for MSP.
(B). Motivation for extending I-PPI to C-PPL.
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Ziqi Gao, Xiangguo Sun, Zijing Liu, Yu Li, Hong Cheng, Jia Li. Protein Multimer Structure Prediction via Prompt Learning. ICLR 2024



'More applications of graph prompt

> @Graph prompt for Protein Multimer Structure

In Figure 10, we demonstrate that PromptMSP can successfully assemble unknown multimers,
where no chain has a similarity higher than 40% with any chain in the training set.

A=

(PDB: 6XBL(N=5)  TM-Score:1.0  TM-Score:0.58 (PDB: 5XOG(N=15) TM-Score:0.87  TM-Score:0.41 )

fe
‘,(ﬂ’ £
S
aw

“’{'ﬂ”;:,
ST

\_ Ground-truth Ours

Figure 10: Visualization of multimers with chain numbers of 5 and 15. They are both successfully
predicted by PROMPTMSP. For 5XOG, our model correctly predicted 12 out of 14 assembly actions.
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Ziqi Gao, Xiangguo Sun, Zijing Liu, Yu Li, Hong Cheng, Jia Li. Protein Multimer Structure Prediction via Prompt Learning. ICLR 2024



'More applications of graph prompt

> Graph prompt for Drug—Drug Interactlon

| OHMolecular Graph Pretext 1. Molecule Slmllarlty Score Predlctlon Molecular Graph } ] Downstream Event Classnficatlon i
* 8
i : ! i GNN !
i Molecular i | Similar Molecular -y OH | |
1 I Score? < 1 ‘
| L Y O e == i
‘ == | (mth !
: Xy Xu - = : E i
RO O e i . OType?='] ‘
| 0 Pretext 2: Link Prediction ] e, N, 1
! i i - imilar? 3
w i pe== i =T N : IN ® META-DDIE ¢ DDIPrompt
: drug v, H E & DDI i | Link E | Event Class 1 | Event Class2 Ev% Class3 | | NN (v)k94 D2PT
: GNN E L icta? H ﬁ
E E E i Exists? E E E 3 UO O O O ¥ ¢
| H h, S uﬁ | : Class Prompts & ‘ £0.86 v
1 ‘ 2
P PP{(?T?P? 77777777777777777777777777777777777777 Hierarchical Pre-training L@tﬁurlei oY Prompt Tuning ) g e
15}
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Figure 3: Efficiency analysis on Ryu’s dataset.

Yingying Wang, Yun Xiong, Xixi Wu, Xiangguo Sun, Jiawei Zhang. DDIPrompt: Drug-Drug Interaction Event Prediction based on GraphsPrompt

Learning. CIKM 2024



'More applications of graph prompt

> Graph prompt for Drug-Drug Interaction

DeepDDI V¥V MUFFIN ® META-DDIE ¢ DDIPrompt
B SSI-DDI MRCGNN 4 D=2PT
0.94 0.94
Molecular Grph || Downstream: Event Classification |
of drug u i i
¢ .
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DDI Graph < 1 . < . ,
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0.70 | | T 0.70 r . ;
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#Parameters (x109)

Figure 3: Efficiency analysis on Ryu’s dataset.

Yingying Wang, Yun Xiong, Xixi Wu, Xiangguo Sun, Jiawei Zhang. DDIPrompt: Drug-Drug Interaction Event Prediction based on GraghPrompt

Learning. CIKM 2024



Graph Prompt Tool Pr‘G

We develop a powerful tool to help researchers easily
conduct various graph prompting approaches.

https://github.com/sheldonresearch/ProG A library built upon PyTorch to easily conduct
single or multi-task prompting for pre-trained
GNNs-— oo oo .
E E % Evaluation [ Comprehensive Metrics ] [ Batch Evaluator ] [ Dynamic Dispatcher ] i
| ' 4
| Data Prompting PrG
[ paaloader | Prompting Method ,
. g [ Pre-processing ] 0 E’ [ Allinona ] [ GPPT ] i Model Backbone ;
i [ Feature Engineering J i [ GPF ] [ GPF_plus ] i [ GCN ]
i Utils i [ GraphPrompt ] [ ...... ] i n { e % .
| . e e - Graph Transformer |
; [ Component Masking ] Task Level ,
i [ Sampler ) r_----—-----_------------------------—--: [ GraphSAGE J
: i [ Node-level ][ Edge-level J[ Graph-level ] !
i [ loss |} ) [ """ ]

Configuration [ Conf Files J [ Pre-trained Model J Demo [ Multiple Task ] [ M@?ﬁearning ]




\ Graph Prompt Tool

import prompt_graph as ProG ¢
from ProG.pretrain import Edgepred_GPPT, Edgepred_Gprompt, GraphCL, SimGRACE, NodePrePrompt,
from ProG.utils import seed_everything

from ProG.utils import mkdir, get_args

from ProG.data import load4node, load4graph

args = get_args()
seed_everything(args.seed)

if args.task == 'SimGRACE':

pt = SimGRACE(dataset_name = args.dataset_name, gnn_type = args.gnn_type, hid_dim = args
if args.task == 'GraphCL':

pt = GraphCL(dataset_name = args.dataset_name, gnn_type = args.gnn_type, hid_dim = args.
if args.task == 'Edgepred_GPPT':

pt = Edgepred_GPPT(dataset_name = args.dataset_name, gnn_type = args.gnn_type, hid_dim =
if args.task == 'Edgepred_Gprompt':

pt = Edgepred_Gprompt(dataset_name = args.dataset_name, gnn_type = args.gnn_type, hid_di
if args.task == 'DGI':

pt = DGI(dataset_name = args.dataset_name, gnn_type = args.gnn_type, hid_dim = args.hid_
if args.task == 'NodeMultiGprompt':

nonlinearity = 'prelu'

pt = NodePrePrompt(args.dataset_name, args.hid_dim, nonlinearity, 9.9, 0.9, 6.1, @.601,
if args.task == 'GraphMultiGprompt':

nonlinearity = 'prelu'

pt = GraphPrePrompt(graph_list, input_dim, out_dim, args.dataset_name, args.hid_dim, nor
if args.task == 'GraphMAE':

pt = GraphMAE(dataset_name = args.dataset_name, gnn_type = args.gnn_type, hid_dim = args

mask_rate=0.75, drop_edge_rate=0.0, replace_rate=0.1, loss_fn='sce', alphs

pt.pretrain()
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\ Graph Prompt Tool B

import prompt_graph as ProG ﬂ;
from ProG.tasker import NodeTask, LinkTask, GraphTask

if args.task == 'GraphTask':
input_dim, output_dim, dataset = load4graph(args.dataset_name)

if args.task == 'NodeTask':
tasker = NodeTask(pre_train_model_path = args.pre_train_model_path,
dataset_name = args.dataset_name, num_layer = args.num_layer,
gnn_type = args.gnn_type, hid_dim = args.hid_dim, prompt_type = args.prc
epochs = args.epochs, shot_num = args.shot_num, device=args.device, 1lr =
batch_size = args.batch_size, data = data, input_dim = input_dim, output

if args.task == 'GraphTask':
tasker = GraphTask(pre_train_model_path = args.pre_train_model_path,
dataset_name = args.dataset_name, num_layer = args.num_layer, gnn_type =
shot_num = args.shot_num, device=args.device, 1lr = args.lr, wd = args.de
batch_size = args.batch_size, dataset = dataset, input_dim = input_dim,

_; test acec, std test_acc; 1, std fT1, roc. std_roc, .; _= tasker.run() 130



\ Graph Prompt Tool

[

Supportive graph prompt approaches currently (keep updating):

[All in One] X. Sun, H. Cheng, J. Li, B. Liu, and J. Guan, "All in One: Multi-Task Prompting for Graph Neural
Networks,” KDD, 2023

[GPF Plus] T. Fang, Y. Zhang, Y. Yang, C. Wang, and L. Chen, "Universal Prompt Tuning for Graph Neural
Networks,” NeurlPS, 2023.

[GraphPrompt] Liu Z, Yu X, Fang Y, et al. Graphprompt: Unifying pre-training and downstream tasks for
graph neural networks. The Web Conference, 2023.

[GPPT] M. Sun, K. Zhou, X. He, Y. Wang, and X. Wang, "GPPT: Graph Pre-Training and Prompt Tuning to
Generalize Graph Neural Networks,” KDD, 2022

[GPF] T. Fang, Y. Zhang, Y. Yang, and C. Wang, "Prompt tuning for graph neural networks," arXiv preprint,
2022.
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\ Graph Prompt Tool

Table 3: Performance on 1-shot graph classification. The best results for each dataset are highlighted
in bold with a dark red background. The second-best are underlined with a light red background.

Methods\Datasets | IMDB-B COLLAB PROTEINS MUTAG ENZYMES COXx2 BZR DD
Supervised | 57.30:|:0_gg 47-23:|:O.61 56.36:|:7,97 65.20:&6_70 20.58:|:2_00 27.08;&1_95 25.80:|:6_53 55.33:&5_22
Pre-train & Fine-tune | 57754129 48.1049.23 63.44 3 ¢4 65.47 15 89 22214579 76.1915 41 34.694850 S57.1544.32
GPPT | 50.15i0_75 47.18:|:5_93 60.9212,47 60.40:|:15_43 21.29:|:3_79 78.23:&1_38 59-32111,22 57.69:|:5_39
All-in-one | 60.07:1:4_81 51.66;&0_26 66.49:|:6_26 79.87:&5434 23.96;&1_45 76.14:&5.51 79.20;&1_55 59.7211_52
Gprompt | 54.75:|:12_43 48.25;&13,64 59-17:|:11.26 73.60:&4.75 22.2913.50 54.64:&9.94 55-43113.69 57-81:|:2.68
GPF ‘ 59.65;&5_06 47.42:|:11'22 63.9113,26 68.40:|:5.09 22.0011.25 65.79117_72 71.67114,71 59.36:&1_18
GPF-plllS | 57°93:|:1.62 47.24:|:0_29 62.9212'78 65.20:&6.04 22-92:|:1.64 33.78:&1.52 71.17:|:14792 57.62:|:2_42
Effectiveness Difference
Between GPF-plus and Pre-training Finetune (Node Task)
DGI-
DGI - 50
GraphMAE - -40  GraphMAE-
20 EdgePre
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(a) GPF-plus (1-shot node classification Task).
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(b) All-in-one (1-shot graph classification Task).
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> We released a repository for o Multi-Modal Prompting with Graphs
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https://github.com/WxxShirley/Awesome-Graph-Prompt

\ Prompt with LLMs on graphs

Step 1: Graph Structure -> Node Sequence

Neighborhood Detail Template

Node Sequence:
ABCDAG [pad] A [pad] [pad] AEF

or

Hop-Field Overview Template

message passing

Hop 0 Hop 1

Node Sequence:
[Hop 0] [Hop 1] [Hop 2] [Hop 3]

Step 2: Node Sequence -> Token Embedding Sequence

Enjunjm
Fr A

Freezed LLM

N
nooooo

o
.

44
W ] Projector {Ay Tuned

t 4 4
aoa

Please Describe the graph: <graph>

Prompt Design (Base Model: Vicuna-v1.5)

: A chat between a curious user and an

artificial intelligence assistant. The assistant gives helpful, detailed,
and polite answers to the user's questions.

USER: Given you a node: <node sequence>...Please tell me...
ASSISTANT: <Answer>

Training Prompt: [SYSTEN 5SAGE] USER:[USER]
ASSISTANT: [ASSISTANT] </STOP>

Inference Prompt: [SYSTEN GE] USER:[USER]
ASSISTANT:

Training Task

Node Classification

O
s

O
s

o

Given a node-centered graph: <node sequence>,
we need to classify the center node into 40
classes: cs.NA(Numerical Analysis),
cs.MM(Multimedia), ..., please tell me which
class the center node belongs to?

cs.NA(Numerical Analysis)
Link Prediction
Given two node-centered subgraphs: <node
sequence> and < node sequence>... Please tell me

whether two center nodes in the subgraphs should
connect to each other. Answer yes or no.

No

Node Description

Please describe the center node : <node sequence>.

The center node represents a paper in
cs.Al(Artificial Intelligence), it’s about
simultaneous merging multiple grid maps using
the robust motion averaging.

Figure 1. Illustration of LLaGA framework and its prompt design paradigm.

Chen R, Zhao T, Jaiswal A, et al. Llaga: Large language and graph assistant.ICML 2024.
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\ Future Directions

- We are still waiting for “ChatGPT Moment” in graphs.
> How powerful is the graph prompt in manipulating data?
> How helpful is the graph prompt for more general graph model?
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