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Outline
Time Section Presenter

10:00-10:15 Part A: Opening & Introduction Hong Cheng

10:15-10:50 Part B: Uni-modal Pretraining Zhixun Li

10:50-11:30 Part C: Multi-modal Pretraining Yuhan Li

11:30-12:00 Coffee Break -

12:00-12:45 Part D: Pretraining with Prompting Xiangguo Sun

12:45-13:00 Q&A -
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Artificial General Intelligence (AGI)

 Artificial General Intelligence (AGI) has achieved huge 
success in NLP and CV areas.
 e.g. Copilot, ChatGPT, Midjourney, etc
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A Basic Workflow of AGI

 Step 1: Pre-train a very large language model (LLM) 
via specific strategies.
 e.g. masked word prediction

Pre-trained Large 
Language Model

Help me answer a multiple choice
Question: Greenhouses are great for plants like
A. Pizza   B. Lollipops   C. French beans

�

Prompt

The correct answer is C. French beans.Answer

Pre-training Large Language 
Model via Masked Word 

Prediction Task

KDD24 will witness many high-quality outcomes.

KDD24 will <Mask> many high-quality <Mask>.

Calculating 
loss for 

updating 
parameters
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A Basic Workflow of AGI

 Step 2: Prompting a pre-trained LLM  

Pre-trained Large 
Language Model

Help me answer a multiple choice
Question: Greenhouses are great for plants like
A. Pizza   B. Lollipops   C. French beans

�

Prompt

The correct answer is C. French beans.Answer

• A language prompt is a piece 
of text added to the beginning 
of an input text.

• The large language model can 
be pre-trained via next word 
prediction

Question-answer task is reformulated to word prediction task, which is 
consistent with the pre-training strategy, thus we do not need to tune LLM. 
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Graph AGI: All In One and One For All

Input

Text

Image

Graph

……

Tasks

Question Answering

Object Recognition

Property Prediction

……
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Three Foundation Problems on Graph AGI
 Do we have any graph foundation model?
 How to preserve graph knowledge?
 How to use the knowledge for general tasks (or even domains)?
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Graph

Citation Network Social Network

Molecular GraphWeb Link 8



Basic Tasks in Graph

？
？ ？

(a) Node Classification (b) Link Prediction (c) Graph Classification
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 Message-passing: GCN, GAT, etc.
 Transformer: Graph Transformer.
 From pair-wise to more general relations

Current Graph Neural Networks

We are still exploring more general graph model 
design
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Most Popular Methods to Process Graph
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…

 Graph Neural Networks (GNNs)
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Graph
 How can graph learning benefit from All In One and One For All 

paradigm?

Molecule 
Property 

Prediction

Classification

Fraud Detection

Recommendation

···
?
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Graph

Citation Network

···

Graph Neural 
Network

Large Language
Model

?

Multi-domain
Graph Datasets

Link
Prediction

Classification

Reasoning

Recommendatio
n

···
Downstream Tasks

Social Network

Molecular Graph

Web Link

 How can graph learning benefit from pretrain-prompt/finetune 
paradigm?
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Road Map

 How to preserve graph knowledge?
 Uni-modal Pretraining
 Multi-modal Pretraining

 How to use the knowledge for general tasks (or 
even domains)?
 Pretraining with Prompting
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Part B Uni-modal Graph Pre-
training
Zhixun Li
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Outline

 Motivation
 Categorization of graph pre-training methods
 Supervised graph pre-training
 Unsupervised graph pre-training
 Predictive-based
 Contrastive-based
 Generative-based

 Limitations
 Advanced graph pre-training
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Motivation

 Scarce Labeled Data. 
 Many applications of machine learning require a model to make 

accurate predictions on test examples that are distributionally 
different from training ones, while task-specific labels are scarce 
during training.

 Out-of-distribution Generalization. 
 Existing GNNs lack out-of-distribution generalization abilities so that 

their performance substantially degrades when there exist distribution 
shifts between training and testing graph data.

17



Categorization

 First Generation: Pre-trained Graph Embeddings. 
 Inspired by Skip-gram, the first generation pre-trained graph embedding 

methods aim to learn good graph embeddings for node clustering, link 
prediction and visualization.

 Second Generation: Pre-trained Graph Encoders.
 With the emergence of expressive GNNs and Transformer, recent 

graph pre-training methods have embraced a transfer learning setting 
where the goal is to pre-train a generic encoder that can deal with 
different tasks.

Xia, Jun, et al. "A survey of pretraining on graphs: Taxonomy, methods, and applications." arXiv preprint arXiv:2202.07893 (2022).
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VGAE
(arXiv 16)

GraphMAE
(SIGKDD 22)

GraphMAE2
(SIGKDD 23)

WGDN
(AAAI 23)

AUG-MAE
(AAAI 24)

DGI
(ICLR 19)

GraphCL
(NeurIPS 20)

GRACE
(arXiv 20)

GCA
(WWW 21)

SimGRACE
(WWW 22)

Jin et al.
(WWW 21)

S2GRL
(arXiv 20)

M3C
(AAAI 20)

SimP-GCN
(WSDM 21)

CAGNN
(arXiv 20)

Hu et al.
(ICLR 19)

Chen et al.
(NeurIPS 23)

Categorization

DeepWalk
(SIGKDD 14)

LINE
(WWW 16)

Node2vec
(SIGKDD 16)

Metapath2vec
(SIGKDD 17)

EGES
(SIGKDD 18)

Pretrained Graph 
Embeddings

Pretrained 
Graph 

Encoders

Supervised 
Graph 

Pretraining

Unsupervised 
Graph 

Pretraining

Predictive-
based

Contrastive-
based

Generative-
based
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Pre-trained Graph Embeddings

 DeepWalk considers the node paths traversed by random walks 
over graphs as the sentences and leveraging Skip-Gram for 
learning latent node representations.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. SIGKDD 2014.
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Pre-trained Graph Embeddings

 Node2vec learns a mapping of nodes to a low-dimensional 
space of features that maximizes the likelihood of preserving 
network neighborhoods of nodes.

Grover, Aditya, and Jure Leskovec. node2vec: Scalable feature learning for networks. SIGKDD 2016.
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Supervised Graph Pre-training

 Hu et al. pretrain GNNs by graph-level multi-task 
supervised pre-training to jointly predict a diverse set of 
supervised labels of individual graphs.

Hu, Weihua, et al. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265 (2019).
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Supervised Graph Pre-training

 Influence of Pre-training on the Scaling Laws

Chen, Dingshuo, et al. Uncovering neural scaling laws in molecular representation learning. NeurIPS 2023.
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Unsupervised Graph Pre-training

Liu, Yixin, et al. Graph self-supervised learning: A survey. TKDE 2022.

• Non-Euclidean 
space

• Node dependency

• Regular grid space
• Sample 

independency
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Unsupervised Graph Pre-training

 Predictive-based methods acquire supervision signals from 
the node-, link- and graph-level properties which can be 
obtained from the graph freely. 

Liu, Yixin, et al. Graph self-supervised learning: A survey. TKDE 2022.
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Predictive-based

 Jin et al. first deepen understandings on when, why, and 
which strategies of self-supervised predictive-based work 
with GNNs by empirically studying numerous basic pretext 
tasks on graphs.

Jin, Wei, et al. Self-supervised learning on graphs: Deep insights and new direction. arXiv preprint arXiv:2006.10141 (2020).
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Predictive-based | S2GRL

 S2GRL
 Predicted property: shortest path.
 They randomly select pairs of nodes in a graph and train a well-designed neural 

network to predict the contextual position of one node relative to the other.

Peng, Zhen, et al. Self-supervised graph representation learning via global context prediction. arXiv preprint arXiv:2003.01604 (2020).
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Contrastive-based

 Motivation
 Contrastive-based methods are built on the 

idea of mutual information (MI) 
maximization, which learns by predicting 
the agreement between two augmented 
instances.

 Components
 Graph Augmentations
 Graph contrastive pretext tasks
 Mutual information estimation

Liu, Yixin, et al. Graph self-supervised learning: A survey. TKDE 2022.
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Contrastive-based | DGI

 Motivation of DGI
 DGI relies on maximizing mutual information between patch representations and 

corresponding high-level summaries of graphs.
 The learnt patch representations summarize subgraphs centered around nodes of 

interest, and can thus by reused for downstream node-wise learning tasks.

Veličković, Petar, et al. "Deep graph infomax." arXiv preprint arXiv:1809.10341 (2018).
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Contrastive-based | GraphCL

 You et al. first design four types of graph augmentations in graph 
contrastive learning. And they systematically study the impact of various 
combinations of graph augmentations on multiple datasets.

You, Yuning, et al. Graph contrastive learning with augmentations. NeurIPS 2020.
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Contrastive-based | GraphCL

 Graph data augmentation:
 NodeDrop, Subgraph, EdgePert, AttrMask

 Observations
 Data augmentations are crucial in graph contrastive learning.
 Composing different augmentations benefits more.
 Edge perturbation benefits social networks but hurts some biochemical molecules.
 Applying attribute masking achieves better performance in denser graphs.
 Node dropping and subgraph are generally beneficial across datasets.
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Contrastive-based | GRACE

 Inspired by the success of self-supervised learning in CV, like SimCLR, 
Zhu et al. proposed GRACE for unsupervised graph representation 
learning by leveraging a contrastive objective at the node level.

Zhu, Yanqiao, et al. Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131 (2020).
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Contrastive-based | GRACE

 Graph data augmentation
 GRACE firstly generates two graph views by randomly corrupting the original graph.

 Learning objective
 Then, GRACE employs contrastive objective that enforces the encoded embeddings 

of each node in the two different views agree with each other and can be 
distinguished from embeddings of other nodes. 
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Contrastive-based | GCA

 Graph data augmentation
 Previous work ignores the discrepancy in the impact of nodes and 

edges when performing data augmentation. 
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Generative-based

 Generative-based methods inputs a perturbated graph. And in the 
pretext task, a generative decoder tries to recover the original graph 
from the representation, with a loss function aiming to minimize the 
difference between the reconstructed and original graph.

Liu, Yixin, et al. Graph self-supervised learning: A survey. TKDE 2022.
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Generative-based | VGAE

 Inference model
 VGAE tasks a simple inference model parameterized by a two-layer GCN

 Generative model
 The generative model of VGAE is given by an inner product between latent variables

 Learning
 Optimize the variational lower bound w.r.t. the variational parameters

Kipf, Thomas N., and Max Welling. "Variational graph auto-encoders." arXiv preprint arXiv:1611.07308 (2016).
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Generative-based | GraphMAE

 Inspired by CV and NLP
 While contrastive SSL methods have experienced an emergence in graph learning, 

generative SSL has been gaining steadily increasing significant thanks to several 
groundbreaking practices, such as BERT and GPT in NLP as well as MAE in CV.

Hou, Zhenyu, et al. Graphmae: Self-supervised masked graph autoencoders. SIGKDD 2022.
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Generative-based | GraphMAE

 Objective
 Instead of reconstructing both features and structure, which unfortunately does not 

empower GAEs to produce significant progree, GraphMAE aims to reconstruct node 
features.

 Weak Decoder
 Traditional GAEs employ either no neural decoders or a simple MLP for decoding with 

less expressiveness, causing the latent code to be nearly identical to input features. 
Therefore, GraphMAE utilizes re-mask decoding to process the latent code for 
decoding.

 New Loss Function
 MSE could suffer from the issues of sensitivity and low selectivity. Therefore, 

GraphMAE leverages the cosine error as the criterion to reconstruct original node 
features.

Hou, Zhenyu, et al. Graphmae: Self-supervised masked graph autoencoders. SIGKDD 2022.
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Generative-based | GraphMAE2

 Limitation of GraphMAE
 The reconstruction of masked features fundamentally relies on the 

discriminability of the input node features.
 Solution

 Impose regularization on target reconstruction. 

39



Generative-based | WGDN

 Motivations
 Generative models weaponed with powerful decoder could achieve comparable or 

even better representation pwoer than contrastive models.
 A powerful decoder should at least remain effective against augmentations.

Cheng, Jiashun, et al. Wiener graph deconvolutional network improves graph self-supervised learning. AAAI 2023.
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Limitations

 Hard to transfer
 Graph structure is extremely diverse. Graphs inherently exhibit diverse 

topologies and features, making it challenging to identify and leverage 
common patterns across different domains.

 Features in one graph mighthave no direct counterpart in another, making it 
incredibly challenging to align these features in a meaningful way.

 Not versatile
 Graph Neural Networks is hard to conduct multiple downstream tasks 

simultaneously.
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Advanced Pre-training | GCOPE

 Motivation
 Tranferring from a single source dataset does indeed negatively affect 

the target task. In order to overcome this obstacle, it is necessary to 
expand the scope of the source dataset so that it can offer valuable 
insights for the downstream task.
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Advanced Pre-training | GCOPE

 Aligning Graphs by Coordinators 
 Feature Projection (singular value decomposition and attention 

mechanism).

 Graph Coordinators

 Learning Objective
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Advanced Pre-training | GCOPE

 Overview of GCOPE

Zhao, Haihong, et al. All in one and one for all: A simple yet effective method towards cross-domain graph pretraining. SIGKDD 2024.
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Advanced Pre-training | GCOPE

 Cross-domain transfer learning performance

Zhao, Haihong, et al. All in one and one for all: A simple yet effective method towards cross-domain graph pretraining. SIGKDD 2024.
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Q&A
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Part C Multi-modal Graph Pre-
training with Large Language 

Models
Yuhan Li
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Outline

 Motivation 
 Categorization of Combining LLM with Graph
 LLM as Enhancer
 LLM as Predictor
 LLM as Aligner
 Others

 Benchmarking GraphLLM 
 Future Directions
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Motivation

 Large Language Models (LLMs)
 Non-autoregressive.

 Encoder-only LLMs.
 Masked language modeling

 Autoregressive.
 Encoder-decoder LLMs.
 Decoder-only LLMs.
 Next token prediction

 Applications: 
 NLP tasks -> machine translation, text classification.
 Other modality tasks -> images, videos
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Motivation

 Integrating LLMs with traditional GNNs can be 
mutually beneficial and enhance graph learning.
 GNNs -> constrained embeddings as node features
 LLMs -> struggle to capture structural information
 Combining GNNs with LLMs …

Li Y, Li Z, Wang P, et al. A Survey of Graph Meets Large Language Model: Progress and Future Directions. IJCAI 2024.
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Motivation

 The integration of GNNs and LLMs across a myriad of 
domains
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Different roles played by LLMs

 LLM as enhancer
 Aiming to enhancing the quality of 

node embeddings with the help of 
powerful LLMs.

 Explanation-based enhancement.

 Embedding-based enhancement.

Li Y, Li Z, Wang P, et al. A Survey of Graph Meets Large Language Model: Progress and Future Directions. IJCAI 2024.
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LLM as enhancer | TAPE

 Citation Networks
 Text-rich graphs.
 Each node represents a paper, and its corresponding textual description 

(e.g., title and abstract) is treated as the node's text attributes.

 Retrieval-Augmented
 Leveraging LLMs to enhance more explanations for each node.

He X, Bresson X, Laurent T, et al. Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning. 
ICLR 2024.
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LLM as enhancer | TAPE
 Pipeline

He X, Bresson X, Laurent T, et al. Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning. 
ICLR 2024.
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LLM as enhancer | TAPE
 Experimental results

He X, Bresson X, Laurent T, et al. Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning. 
ICLR 2024.
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LLM as enhancer | OFA

Liu H, Feng J, Kong L, et al. One for All: Towards Training One Graph Model for All Classification Tasks. ICLR 2024.

 NOI (Node of Interest) prompt node
 Associated with a task prompt text, encoded by an LLM.
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LLM as enhancer | OFA

Liu H, Feng J, Kong L, et al. One for All: Towards Training One Graph Model for All Classification Tasks. ICLR 2024.

 Few/Zero-shot Ability
 “In-context Learning”: It utilizes few-shot support examples by connecting the support NOI 

prompt nodes to the corresponding class nodes to provide exemplary information.
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LLM as enhancer | ZeroG

Li Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.

 Zero-shot Transferability in Graphs
 This trend of zero-shot capabilities in machine learning, particularly after the 

advent of foundation models such as LLMs, has demonstrated considerable 
advancements in the field of AI.

 NLP field: generative paradigm, such as LLaMA, GPT-series, …
 CV field: retrieval paradigm, such as CLIP, …
 In Graph field, zero-shot transfer is also important since:

 1. The emergence of new graphs.
 2. The difficulty of human labeling.

 We focus on cross-dataset zero-shot transferability in graphs.

Training: Graph A Testing: Graph B
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LLM as enhancer | ZeroG

Li Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.

 Dimension Misalignment
 Shallow embedding: bag-of-words, skip-gram, TF-IDF, …

 Mismatched Label Spaces
 GNN’s classification head is fixed to the number of classes during pre-training.

 Negative Transfer
 Fully adapting graph models to source graphs often causes overfitting.
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LLM as enhancer | ZeroG

 Step1: Unified Graph 
Representation
 Use a unified pre-trained LLM to 

encode both node attributes and 
descriptions associated with classes.

 A unified semantic space.

 Step2: Prompt-based 
Subgraph Sampling
 Retricted Extraction
 Prompting Node
 Neighborhood Aggregation

Li Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.
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LLM as enhancer | ZeroG

 Step3: Upstream Pre-training
 PEFT strategy: LoRA.
 Cross-entropy loss

 Downstream Inference
 The class that yields the highest 

similarity score is predicted to be 
the class of the node.

Li Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.
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LLM as enhancer | ZeroG
 In-domain Transferability  Cross-domain Transferability

 Ablation Study

Li Y, Wang P, Li Z, et al. ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs. SIGKDD 2024.
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Different roles played by LLMs

 LLM as predictor
 Aiming to utilize LLMs to make 

predictions for a wide range of 
graph-related tasks, within a 
unified generative paradigm.

 Flatten-based prediction.

 GNN-based prediction.

Li Y, Li Z, Wang P, et al. A Survey of Graph Meets Large Language Model: Progress and Future Directions. IJCAI 2024.
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LLM as predictor | NLGraph

 NLGraph Benchmark
 Graph reasoning tasks, such as shortest path and cycle detection. 

Wang H, Feng S, He T, et al. Can Language Models Solve Graph Problems in Natural Language? NeurIPS 2023 spotlight.
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LLM as predictor | NLGraph

 Input & Output
 Shortest path, GPT-4: 

Wang H, Feng S, He T, et al. Can Language Models Solve Graph Problems in Natural Language? NeurIPS 2023 spotlight.

=>
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LLM as predictor | NLGraph

 Insights
 LLMs have (Preliminary) graph reasoning abilities.

Wang H, Feng S, He T, et al. Can Language Models Solve Graph Problems in Natural Language? NeurIPS 2023 spotlight.
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LLM as predictor | Talk like a graph

Fatemi B, Halcrow J, Perozzi B. Talk like a Graph: Encoding Graphs for Large Language Models? ICLR 2024.

 GraphQA Benchmark
 Graph reasoning tasks, similar to NLGraph. 

 Encoding Strategies
Real-world Scenarios!
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LLM as predictor | Talk like a graph

Fatemi B, Halcrow J, Perozzi B. Talk like a Graph: Encoding Graphs for Large Language Models? ICLR 2024.

 Insights
 Graph encoding functions have significant impact on LLM reasoning.

 As a result, it becomes important to translate a given task into more 
contextually meaningful textual information when employing LLMs for 
inference.
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LLM as predictor | GraphWiz

 Motivation 1: Graph Size Limitation
 Support more nodes and edges

 Motivation 2: Solve Graph Problems Explicitly
 CoT ability => Explicit Reasoning Path.

 Motivation 3: Training, not only Inference
 Existing works only focus on inference close-sourced LLMs.
 Can we train our own LLMs for graph reasoning?

Chen N, Li Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.
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LLM as predictor | GraphWiz

 What we do
 Tackle the data challenge: GraphInstruct (G-Q-R).
 Explore training strategies: Mix-tasked Instruction Tuning and DPO.
 In-Depth Analysis: Data Amount, Transferability, GraphWiz limit, etc.

Chen N, Li Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.

We aim at leveraging instruction-tuning to build a powerful instruction-following LLM
that can map textural descriptions of graphs and structures, and then solve different 

graph problems explicitly in natural language

Goal
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LLM as predictor | GraphWiz

 GraphInstruct-Tasks

Chen N, Li Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.

1. Diverse Distributions: 
Node range and edge 
density

2. Length Constraints: No 
more than 4K

3. Unique Instances

4. Scalable Graph Sizes.

Strategy

Initial 27k graph problem (G-Q)
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LLM as predictor | GraphWiz

 GraphInstruct-Statistics

Chen N, Li Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.
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LLM as predictor | GraphWiz

Chen N, Li Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.

 Training
 Two-phases training.
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LLM as predictor | GraphWiz
 Main Results of GraphWiz

Chen N, Li Y, Tang J, et al. GraphWiz: An Instruction-Following Language Model for Graph Computational Problems. SIGKDD 2024.
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Different roles played by LLMs

 LLM as aligner
 Aligning the embedding spaces of GNNs and LLMs is an effective way 

to integrate the graph modality with the text modality.
 Ensuring that each encoder’s unique functionalities are preserved 

while coordinating their embedding spaces at a specific stage.

Li Y, Li Z, Wang P, et al. A Survey of Graph Meets Large Language Model: Progress and Future Directions. IJCAI 2024.
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LLM as aligner | MoleculeSTM

 Molecules
 Each molecule is corresponded with a description.

 Pipeline – Contrastive Learning

Liu S, Nie W, Wang C, et al. Multi-modal Molecule Structure-text Model for Text-based Editing and Retrieval. NMI 2023.
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LLM as aligner | GLEM

 EM Framework
 E-step: LM optimization.
 M-step: GNN optimization.
 Iterative generate pseudo-labels and update both LM and GNN.

Zhao J, Qu M, Li C, et al. Learning on Large-scale Text-attributed Graphs via Variational Inference. ICLR 2023.
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Others: LLM as Labeller | LLM-GNN

 Pipeline
 Step1: Active node selection
 Step2: Annotation 
 Step3: Post-filtering 
 Step4: GNN training/inference

 Reliable Annotation

Chen Z, Mao H, Wen H, et al. Label-free Node Classification on Graphs with Large Language Models (LLMS). ICLR 2024.
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Benchmarking GraphLLM

 Motivation
 1. The use of different datasets, data processing approaches, and data 

splitting strategies in previous GraphLLM works.
 2. The lack of benchmarks for zero-shot graph learning has led to limited 

exploration in this area.
 3. Each method’s computation and memory costs often overlooked.

Li Y, Wang P, Zhu X, et al. GLBench: A Comprehensive Benchmark for Graph with Large Language Models. Arxiv 2024.
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Benchmarking GraphLLM | GLBench

 Comparison with existing benchmarks

 Datasets

Li Y, Wang P, Zhu X, et al. GLBench: A Comprehensive Benchmark for Graph with Large Language Models. Arxiv 2024.
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Benchmarking GraphLLM | GLBench

 Supervised 
Scenario
 Effectiveness
 LLM-as-

predictor
 LLM-as-

enhancer
 LLM-as-aligner
 Scaling law

Li Y, Wang P, Zhu X, et al. GLBench: A Comprehensive Benchmark for Graph with Large Language Models. Arxiv 2024.
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Benchmarking GraphLLM | GLBench

 Zero-shot Scenario
 LLMs 
 Semantics/Structures?
 Even a simple baseline can outperform existing GraphLLM methods.

Li Y, Wang P, Zhu X, et al. GLBench: A Comprehensive Benchmark for Graph with Large Language Models. Arxiv 2024.
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Future Directions

 Dealing with non-Text-Attributed-Graph.
 Dealing with Data Leakage.

 Especially for citation networks.

 Improving Transferability.
 Transfer across datasets/domains/tasks.

 Improving Explainability.
 Generate user-friendly explanations for graph reasoning, classification, etc.

 Improving Efficiency.
 Especially for LLM-as-predictor methods.
 PEFT.

 Analysis and improvement of expressive ability.
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Q&A
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Time Section Presenter

10:00-10:15 Part A: Opening & Introduction Hong Cheng

10:15-10:50 Part B: Uni-modal Pretraining Zhixun Li

10:50-11:30 Part C: Multi-modal Pretraining Yuhan Li

11:30-12:00 Coffee Break -

12:00-12:45 Part D: Pretraining with Prompting Xiangguo Sun

12:45-13:00 Q&A -
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Part D  Graph Pre-training with 
Prompting

Xiangguo SUN
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Graph Prompting

 What and why graph prompt
 A Basic workflow of graph prompt
 Graph prompt in multi-task settings
 Graph prompt in cross-domain settings
 Applications and open-source tools 
 Prompt with LLMs and graphs
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Graph AGI Still in the Early Stage

 Why hard?
 Cross-modalities, cross-domains, cross-tasks
 Social disputes: counterfactual outcomes, energy cost, etc. 
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Fine-tune v.s. Prompt

 Fine-tune
 Need to tune the large pre-trained 

model (inefficient)
 Do not change data
 Limited task generalization

 Prompt
 Frozen the large pre-trained model 

(efficient)
 Has the capability of reformulating 

data
 More general cross tasks
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Artificial General Intelligence (AGI)

• Large Language Models
• Training Tricks
• Computing Capability
• …

Data
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Prompt: Promising for Graph AGI

 A promising approach to reformulate data.  
 Which is helpful for cross-domains demand.

 Widely used in other modalities (NLP and CV)
 Which is promising for cross-modalities.
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Prompt: Promising for Graph AGI

 Reformulate downstream tasks to the pre-
training task.
 Which is promising for cross-tasks.

 No need to change the large foundation model 
again.
 Which is more efficient than fine-tuning

How to develop a prompting framework to graphs 
like language model?
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Motivation
 Similar insights between LLM and GNN pre-training

KDD2024 will witness many high-quality papers.

KDD2024 will <Mask> many high-quality <Mask>.

LLM

Node/edge/sub-graph 
dropping

Maximize 
Agreement 

Aligning two graph views is very similar to predicting some vacant “masks” 
on graphs. 

Maximize 
Agreement Pre-training in LLM: 

Masked word 
prediction

Pre-training in graph 
models: contrastive 

learning.
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Challenge 1
 Designing the graph prompt is more intractable than 

language prompts 
 NLP prompts are usually some preset tokens, whereas the graph 

prompt needs to know how to organize these tokens and how to insert 
the prompt into the original graph.

graph promptlanguage prompt

KDD2023 will witness many high-quality 
papers. I feel so [MASK]

A language prompt
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Challenge 2

 Reconciling downstream problems to the pre-training task 
is more difficult in graph domains
 Graph tasks with node level, edge level, and graph level are far diversified.

Edge 
perturbation

Pre-training Task

View 1

View 2

GNN to be 
pre-trained

View 1

View 2

Maximizing the 
similarity

Downstream 
Task

How to reformulate 
node operations to 

the edge 
perturbation?

Node classification
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Challenge 3

 Learning reliable prompts is more difficult in the multi-
task setting
 Hand-crafted prompts are usually task-bounded, which is far from 

sufficient for multiple tasks.

Graph Classification Link Prediction
Node Classification

Prompt 1
Prompt 2

Prompt 3

Initial Prompt 96



Revisit Language Prompt

 Soft-Prompt and Hand-crafted Prompt
 Hand-crafted prompts are manually designed phrases.
 Soft-prompts are learnable word latent vectors

 Make graph prompt learnable (soft-prompt for graphs)
 Hand-crafted: not clear what should they look like.
 Soft-prompts: learnable on graph and are more easily to achieve.

soft promptHand-crafted prompt

KDD2023 will witness many high-quality 
papers. I feel so [MASK]

A language prompt

KDD2023 will witness many high-quality 
papers     [MASK]

A language prompt

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD 2023
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Unified Soft-Prompt for Graphs

 Prompt Token
 Vectorized information with the 

same size as node features.

 Token Structure
 Inner connections among different 

tokens. 

 Inserting Pattern
 Cross links between prompt tokens 

and the original graph.

Original 
Graph

Prompt 
Graph

Prompt Token

Token 
Structure

Inserting 
Pattern

Combined Graph
(sent to the pre-trained 
GNN for downstream 

tasks)Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD 2023
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Reformulating Downstream Tasks

 Node-level to edge-level

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, Xin Wang. GPPT: Graph Pre-training and Prompt Tuning to Generalize 
Graph Neural Networks. In KDD'2022
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Reformulating Downstream Tasks

 Reformulating downstream tasks to link-level tasks

Zemin Liu, Xingtong Yu, Yuan Fang, Xinming Zhang. GraphPrompt: Unifying Pre-Training and Downstream Tasks for 
Graph Neural Networks. In WWW'2023 100



Reformulating Downstream Tasks

 Reformulating downstream tasks to graph-level tasks
 Node/edge-level operations can be treated as some 

special cases at the graph-level operations.
  e.g, “deleting a subgraph” is the higher-level operation 

of “deleting nodes and edges”. 
Graph-level 
Operations

“deleting a subgraph” 
etc.Node-level 

Operations
“changing 

node 
features”, 

“deleting/addi
ng a node”, 

etc.

Edge-level 
Operations

“adding/deleti
ng an edge” 

etc.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD 2023
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Reformulating Downstream Tasks

 Reformulating downstream tasks by induced graphs
 Node tasks to graph tasks.
 Edge tasks to graph tasks.

Finding a k-hop ego-
net for the target 

node

Assigning the node 
label to the graph 

label

Reformulating node 
classification to graph 

classification

Reformulating link prediction to 
graph classification

Extending a node pair 
to their k-hop 
neighbours

Assigning the graph label 
according to node pair 

connection

Graph label is positive  
if the node pair has an 
edge and vice versa.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD 2023
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Multi-task Prompting via Meta Learning

Phase 1: Meta Training 
on Source Tasks

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD 2023
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Multi-task Prompting via Meta Learning

Phase 2: Meta Testing on the 
Target Task

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD 2023
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Multi-task Prompting via Meta Learning
 An Example:
 Target task: link prediction.
 Source tasks: Node binary classification tasks. 

 Each task corresponds to one node class.
 All inputs are induced graphs. 

Task1: 
red or not?

Task2: 
purple or not?

Task3: 
blue or not?

Prompt 
Graph

Pre-trained 
GNN

Learn reliable 
prompts on source 

tasks

Use the prompt for 
target tasks

Link prediction 
task
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Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, Jihong Guan. All in One: Multi-task Prompting for Graph Neural Networks. SIGKDD2023

Multi-task Prompting via Meta Learning
Support 

set
Query 

set

Node Class 1

Support 
set

Query 
set

Node Class 2

Support 
set

Query 
set

Node Class 3

Inner adapting

Outer adapting

Inner adapting

Inner 
adapting

Initial 
prompt

Prompt 1

Prompt 2
Prompt 3

Adapt prompt 
initialization

∑

…

Phase 1: Meta Training
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Multi-task Prompting via Meta Learning

Phase 2: Meta Testing

Prompt 4

Query set

Support set
Link 

Prediction

Inner adapting
Link 

Prediction

Evaluating on:

Support 
set

Query 
set

Node Class 1

Support 
set

Query 
set

Node Class 2

Support 
set

Query 
set

Node Class 3

Inner adapting

Outer adapting

Inner adapting

Inner 
adapting

Initial 
prompt

Prompt 1

Prompt 2
Prompt 3

Adapt prompt 
initialization

∑

…
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Why It Works?
The nature of prompting is to manipulate the input 

data to match the pretext. 
The flexibility of data operations is the bottleneck of 

prompting performance.

[1] Taoran Fang, et al. Prompt Tuning for Graph Neural Networks. arXiv preprint arXiv:2209.15240 (2022).

Fang et al. [1] proved that we can always learn an 
appropriate prompt token �∗ making the following equation 
stand:

�∗ �,  � + �∗ = �∗ � �, �  + ���

• �∗: pre-trained model
• �∗: a prompt token
• �,  �: adjacent matrix and feature matrix
• �(.): graph manipulation (e.g. “changing node features”, 

“adding or removing edges/subgraphs” etc)

This means we can 
learn an appropriate 
token applied to the 

original graph to imitate 
any graph manipulation.
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The error bound ��� is related to: (1) some non-linear layers of 
the model (unchangeable), and (2) the quality of the learned 
prompt (changeable), which is promising to be further 
narrowed down by a more advanced prompt scheme.

�∗ �,  � + �∗ = �∗ � �, �  + ���

�∗ � �, ��
∗    = �∗ � �, �  + ���

∗

We extend the standalone token �∗ to a 
prompt graph ��

∗  that has multiple prompt 
tokens with learnable inner structures and 
more advanced inserting pattern � to the 
original graph �

We can empirically demonstrate: ���
∗ ≤ ���

That means our method supports more flexible transformations 
on graphs to match various pre-training strategies.

Why It Works?
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Experiments

 Multi-Task Performance with Few-shot Learning 
Settings

Node 
classification
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Experiments

 Multi-Task Performance with Few-shot Learning 
Settings

Edge 
classification
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Experiments

 Multi-Task Performance with Few-shot Learning 
Settings

Graph 
classification
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 Domain transfer on graphs via prompt

From Multi-task to Multi-domain

Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, Jia Li. All in One and One for All: A Simple yet Effective Method towards Cross-
domain Graph Pretraining. SIGKDD 2024.

113



Cross-domain Graph Pre-training

 Cross-domain ability is one of the key 
innovations in AGI (e.g., NLP and CV)
 Which pre-trains one foundation model using various 

contexts, absorbing cross-domain knowledge (‘All in One’).
 Then, generalizes learned knowledge to a wide spectrum 

of downstream domains (‘One for All’).
 Hard to replicate the success in the graph field 

remains.
 Which faces the negative transfer phenomenon.
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Negative Transfer Phenomenon

 Homophilic Domain
 Source domain.
 Pre-train on Pubmed or Photos.

 Heterophilic Domain
 Target domain.
 Transfer to Wisconsin, Texas, 

Cornell, Chameleon, or Squirrel.

 Negative Transfer
 Hard to transfer across various 

domains via traditional pre-
training approaches.

Negative transfer phenomenon in the single-source 
cross-domain transfer setting which is the traditional 
way to achieve transferring.
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Motivation
 Follow the pre-training paradigm in LLM

Introducing the ‘All in One and One for All’ paradigm into the graph field like 
LLM.
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Challenge 1
 Identifying and leveraging commonalities across 

domains is more intractable than LLMs during the pre-
training phase 
 The cross-domain training samples in NLP are all in text format, 

whereas the samples in graph fields are in diverse structural patterns, 
which is particularly observed between homophilic graphs (a pair of 
nodes are intended to be similar if they are connected) and heterophilic 
graphs (connected nodes depart from each other).Just finished an amazing hike with stunning views!

The Eiffel Tower is a famous landmark in Paris, France.

The patient presents with symptoms consistent with a 
mild upper respiratory infection.

···

Text samples Graph samples 117



Challenge 2

 Aligning semantic spaces (features) across graph datasets 
is more complex inherently in graph domains.
 Unlike the pure textual descriptions in NLP, in graph domains, many 

graphs are not text-attributed or with specific feature semantics. They 
have only latent feature vectors and we actually do not know how exactly 
each dimension means. Additionally, the dimensions are far diversified.

···

···

···
···

···

···

hike

France

symptom

Unified feature spaces Diverse feature spaces 118



Our Solutions

 We introduce the concept of “coordinators”, which 
are some virtual nodes that function as dynamic 
bridges between disparate graph datasets, 
prompting the integration across domains. 

 We design a complete cross-domain pre-training 
framework and provide two transferring components, 
which can ensure that the knowledge transferred is 
not just relevant but also contextually enriched.

 We carefully analyze why our method works and 
confirm the effectiveness of our method via 
extensive experiments. 119



Coordinators

 Feature Projection
 Various features are aligned by 

a projecting module, such as 
1433 -> 100, 745 -> 100, and 
1703 -> 100.

 Graph Coordinators
 Cross Connection between 

Coordinators and Datasets
 Inner Connection within 

Coordinators
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Unified Cross-domain Graph Pre-training

Based on carefully designed graph coordinators, we propose a complete cross-
domain graph pre-training approach called Graph COordinators for PrEtraining 
(GCOPE), that harnesses the underlying commonalities across diverse graph 
datasets to enhance few-shot learning. Our novel methodology involves a 
unification framework that amalgamates disparate graph datasets during the 
pretraining phase to distill and transfer meaningful knowledge to target tasks. 

121



Experiments

 Cross-domain Performance with Few-shot Learning 
SettingsAn example:

Pretrain on:
- Cora
- Citeseer
- Pubmed
- Computers
- Photo
- Texas
- Cornell
- Chameleon
- Squirrel

Transfer to:
- Wisconsin

IMP (%) = 
Improvement Percentage 122



Research Survey for Further Study

 Graph Prompting Research
 Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, 

Jia Li. Graph Prompt Learning: A Comprehensive Survey and 
Beyond. https://arxiv.org/abs/2311.16534

 Graph Meets Large Language Model 
 A Survey of Graph Meets Large Language Model: Progress and 

Future Directions. Survey paper at IJCAI2024.
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 Graph prompt for Protein Multimer Structure 

More applications of graph prompt

Ziqi Gao, Xiangguo Sun, Zijing Liu, Yu Li, Hong Cheng, Jia Li. Protein Multimer Structure Prediction via Prompt Learning. ICLR 2024
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 Graph prompt for Protein Multimer Structure 

Ziqi Gao, Xiangguo Sun, Zijing Liu, Yu Li, Hong Cheng, Jia Li. Protein Multimer Structure Prediction via Prompt Learning. ICLR 2024

More applications of graph prompt
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 Graph prompt for Drug-Drug Interaction 

Yingying Wang, Yun Xiong, Xixi Wu, Xiangguo Sun, Jiawei Zhang. DDIPrompt: Drug-Drug Interaction Event Prediction based on Graph Prompt 
Learning. CIKM 2024

More applications of graph prompt
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 Graph prompt for Drug-Drug Interaction 

Yingying Wang, Yun Xiong, Xixi Wu, Xiangguo Sun, Jiawei Zhang. DDIPrompt: Drug-Drug Interaction Event Prediction based on Graph Prompt 
Learning. CIKM 2024

More applications of graph prompt
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Graph Prompt Tool

 We develop a powerful tool to help researchers easily 
conduct various graph prompting approaches.

A library built upon PyTorch to easily conduct 
single or multi-task prompting for pre-trained 
GNNs

https://github.com/sheldonresearch/ProG
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Graph Prompt Tool
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Graph Prompt Tool
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Graph Prompt Tool
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Graph Prompt Tool
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Graph Prompt Tool

 We released a repository for 
a comprehensive collection of 
research papers, datasets, 
other resources.

133

https://github.com/WxxShirley/Awesome-Graph-Prompt


Prompt with LLMs on graphs

Chen R, Zhao T, Jaiswal A, et al. Llaga: Large language and graph assistant.ICML 2024.
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Future Directions

 We are still waiting for “ChatGPT Moment” in graphs.
 How powerful is the graph prompt in manipulating data?
 How helpful is the graph prompt for more general graph model?
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Q&A
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